RESUMO
Segmentectomy is a targeted surgical approach tailored for patients with compromised health and early-stage lung cancer. The key to successful segmentectomy lies in precisely identifying the tumor and intersegmental planes to ensure adequate resection margins. In this study, we aimed to enhance this process by simultaneously visualizing the tumor and intersegmental planes through the intravenous injection of indocyanine green (ICG) at different time points and doses. Lung tumors were detected by intravenous injection of ICG at a dose of 2 mg/kg 12 h before surgery in a rabbit model. Following the dissection of the pulmonary artery, vein, and bronchi of the target segment, 0.6 mg/kg of ICG was injected intravenously to detect the intersegmental plan. Fluorescent images of the lung tumors and segments were acquired, and the fluorescent signal was quantified using the signal-to-background ratio (SBR). Finally, a pilot study of this method was conducted in three patients with lung cancer. In a preclinical study, the SBR of the tumor (4.4 ± 0.1) and nontargeted segments (10.5 ± 0.8) were significantly higher than that of the targeted segment (1.6 ± 0.2) (targeted segment vs. nontarget segment, p < 0.0001; target segment vs. tumor, p < 0.01). Consistent with preclinical results, lung tumors and the intersegmental plane were successfully detected in patients with lung cancer. Consequently, adequate resection margins were identified during the surgery, and segmentectomy was successfully performed in patients with lung cancer. This study is the first to use intravenous ICG injections at different time points and doses to simultaneously detect lung cancer and intersegmental planes, thereby achieving segmentectomy for lung cancer.
RESUMO
The widespread use of video-assisted thoracoscopic surgery (VATS) has triggered the rapid expansion in the field of computed tomography (CT)-guided preoperative localization and near-infrared (NIR) fluorescence image-guided surgery. However, its broader application has been hindered by the absence of ideal imaging contrasts that are biocompatible, minimally invasive, highly resolvable, and perfectly localized within the diseased tissue. To achieve this goal, we synthesize a dextran-based fluorescent and iodinated hydrogel, which can be injected into the tissue and imaged with both CT and NIR fluorescence modalities. By finely tuning the physical parameters such as gelation time and composition of iodinated oil (X-ray contrast agent) and indocyanine green (ICG, NIR fluorescence dye), we optimize the hydrogel for prolonged localization at the injected site without losing the dual-imaging capability. We validate the effectiveness of the developed injectable dual-imaging platform by performing image-guided resection of pulmonary nodules on tumor-bearing rabbits, which are preoperatively localized with the hydrogel. The injectable dual-imaging marker, therefore, can emerge as a powerful tool for surgical guidance.
Assuntos
Corantes Fluorescentes , Hidrogéis , Verde de Indocianina , Hidrogéis/química , Hidrogéis/administração & dosagem , Animais , Verde de Indocianina/administração & dosagem , Verde de Indocianina/química , Coelhos , Corantes Fluorescentes/química , Corantes Fluorescentes/administração & dosagem , Cirurgia Assistida por Computador , Imagem Óptica , Tomografia Computadorizada por Raios X , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/diagnóstico por imagem , Dextranos/química , Dextranos/administração & dosagem , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/cirurgia , Injeções , HumanosRESUMO
BACKGROUND: This study aimed to evaluate the effectiveness of neo-mannosyl human serum albumin-indocyanine green (MSA-ICG) for detecting metastatic lymph node (LN) and mapping sentinel lymph node (SLN) using mouse footpad uterine tumor models. Additionally, the authors assessed the feasibility of MSA-ICG in SLN mapping in rabbit uterine cancer models. MATERIALS AND METHODS: The authors compared the LN targeting ability of MSA-ICG with ICG. Six mouse footpad tumor models and two normal mice were each assigned to MSA-ICG and ICG, respectively. After the assigned tracers were injected, fluorescence images were taken, and the authors compared the signal-to-background ratio (SBR) of the tracers. A SLN biopsy was performed to confirm LN metastasis status and CD206 expression level. Finally, an intraoperative SLN biopsy was performed in rabbit uterine cancer models using MSA-ICG. RESULTS: The authors detected 14 groin LNs out of 16 in the MSA-ICG and ICG groups. The SBR of the MSA-ICG group was significantly higher than that of the ICG group. The metastatic LN subgroup of MSA-ICG showed a significantly higher SBR than that of ICG. CD206 was expressed at a high level in metastatic LN, and the signal intensity difference increased as the CD206 expression level increased. SLN mapping was successfully performed in two of the three rabbit uterine cancer models. CONCLUSIONS: MSA-ICG was able to distinguish metastatic LN for an extended period due to its specific tumor-associated macrophage-targeting property. Therefore, it may be a more distinguishable tracer for identifying metastatic LNs and SLNs during uterine cancer surgery. Further research is needed to confirm these results.
Assuntos
Modelos Animais de Doenças , Verde de Indocianina , Lectinas Tipo C , Metástase Linfática , Receptor de Manose , Lectinas de Ligação a Manose , Receptores de Superfície Celular , Linfonodo Sentinela , Neoplasias Uterinas , Animais , Feminino , Coelhos , Verde de Indocianina/administração & dosagem , Lectinas de Ligação a Manose/metabolismo , Lectinas de Ligação a Manose/análise , Camundongos , Neoplasias Uterinas/patologia , Neoplasias Uterinas/cirurgia , Linfonodo Sentinela/patologia , Linfonodo Sentinela/metabolismo , Receptores de Superfície Celular/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/análise , Biópsia de Linfonodo Sentinela/métodosRESUMO
BACKGROUND: Segmentectomy, recommended for early-stage lung cancer or compromised lung function, demands precise tumor detection and intersegmental plane identification. While indocyanine green (ICG) commonly aids in these aspects using near-infrared imaging, its separate administrations through different routes and times can lead to complications and patient anxiety. This study aims to develop a lung-specific delivery method by nebulizing low-dose ICG to targeted lung segments, allowing simultaneous detection of lung tumors and intersegmental planes across diverse animal models. METHODS: To optimizing the dose of ICG for lung tumor and interlobar fissure detection, different doses of ICG (0.25, 0.1, and 0.05 mg/kg) were nebulized to rabbit lung tumor models. The distribution of locally nebulized ICG in targeted segments was studied to evaluate the feasibility of detecting lung tumor and intersegmental planes in canine lung pseudotumor models. RESULTS: Near-infrared fluorescence imaging demonstrated clear visualization of lung tumor margin and interlobar fissure using local nebulization of 0.1 mg/kg ICG for only 4 min during surgery in the rabbit models. In the canine model, the local nebulization of 0.05 mg/kg of ICG into the target segment enabled clear visualization of pseudotumor and intersegmental planes for 30 min. CONCLUSIONS: This innovative approach achieves a reduction in ICG dose and prolonged the visualization time of the intersegmental plane and effectively eliminates the need for the hurried marking of tumors and intersegmental planes. The authors anticipate that lung-specific delivery of ICG will prove valuable for image-guided limited resection of lung tumors in clinical practice.
Assuntos
Verde de Indocianina , Neoplasias Pulmonares , Verde de Indocianina/administração & dosagem , Animais , Coelhos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Cães , Nebulizadores e Vaporizadores , Imagem Óptica , Modelos Animais de Doenças , Pneumonectomia , Pulmão/diagnóstico por imagem , Pulmão/patologia , Margens de Excisão , Corantes/administração & dosagemRESUMO
BACKGROUND: Segmentectomy is a type of limited resection surgery indicated for patients with very early-stage lung cancer or compromised function because it can improve quality of life with minimal removal of normal tissue. For segmentectomy, an accurate detection of the tumor with simultaneous identification of the lung intersegment plane is critical. However, it is not easy to identify both during surgery. Here, the authors report dual-channel image-guided lung cancer surgery using renally clearable and physiochemically stable targeted fluorophores to visualize the tumor and intersegmental plane distinctly with different colors; cRGD-ZW800 (800 nm channel) targets tumors specifically, and ZW700 (700 nm channel) simultaneously helps discriminate segmental planes. METHODS: The near-infrared (NIR) fluorophores with 700 nm and with 800 nm channels were developed and evaluated the feasibility of dual-channel fluorescence imaging of lung tumors and intersegmental lines simultaneously in mouse, rabbit, and canine animal models. Expression levels of integrin αvß3, which is targeted by cRGD-ZW800-PEG, were retrospectively studied in the lung tissue of 61 patients who underwent lung cancer surgery. RESULTS: cRGD-ZW800-PEG has clinically useful optical properties and outperforms the FDA-approved NIR fluorophore indocyanine green and serum unstable cRGD-ZW800-1 in multiple animal models of lung cancer. Combined with the blood-pooling agent ZW700-1C, cRGD-ZW800-PEG permits dual-channel NIR fluorescence imaging for intraoperative identification of lung segment lines and tumor margins with different colors simultaneously and accurately. CONCLUSION: This dual-channel image-guided surgery enables complete tumor resection with adequate negative margins that can reduce the recurrence rate and increase the survival rate of lung cancer patients.
Assuntos
Neoplasias Pulmonares , Margens de Excisão , Animais , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Camundongos , Humanos , Cães , Coelhos , Pneumonectomia/métodos , Imagem Óptica/métodos , Feminino , Cirurgia Assistida por Computador/métodos , Corantes Fluorescentes/administração & dosagem , Masculino , Estudos Retrospectivos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Pessoa de Meia-Idade , IdosoRESUMO
ICG fluorescence imaging has been used to detect lung cancer; however, there is no consensus regarding the optimization of the indocyanine green (ICG) injection method. The aim of this study was to determine the optimal dose and timing of ICG for lung cancer detection using animal models and to evaluate the feasibility of ICG fluorescence in lung cancer patients. In a preclinical study, twenty C57BL/6 mice with footpad cancer and thirty-three rabbits with VX2 lung cancer were used. These animals received an intravenous injection of ICG at 0.5, 1, 2, or 5 mg/kg, and the cancers were detected using a fluorescent imaging system after 3, 6, 12, and 24 h. In a clinical study, fifty-one patients diagnosed with lung cancer and scheduled to undergo surgery were included. Fluorescent images of lung cancer were obtained, and the fluorescent signal was quantified. Based on a preclinical study, the optimal injection method for lung cancer detection was 2 mg/kg ICG 12 h before surgery. Among the 51 patients, ICG successfully detected 37 of 39 cases with a consolidation-to-tumor (C/T) ratio of >50% (TNR: 3.3 ± 1.2), while it failed in 12 cases with a C/T ratio ≤ 50% and 2 cases with anthracosis. ICG injection at 2 mg/kg, 12 h before surgery was optimal for lung cancer detection. Lung cancers with the C/T ratio > 50% were successfully detected using ICG with a detection rate of 95%, but not with the C/T ratio ≤ 50%. Therefore, further research is needed to develop fluorescent agents targeting lung cancer.
RESUMO
Two of the most pressing challenges facing bioimaging are nonspecific uptake of intravenously administered contrast agents and incomplete elimination of unbound targeted agents from the body. Designing a targeted contrast agent that shows fast clearance from background tissues and eventually the body after complete targeting is key to the success of image-guided interventions. Here, this work describes the development of renally clearable near-infrared contrast agents and their potential use for dual-channel image-guided tumor targeting. cRGD-ZW800-PEG (800 nm channel) and ZW700-PEG (700 nm channel) are able to visualize tumor margins and tumor vasculature simultaneously and respectively. These targeted agents show rapid elimination from the bloodstream, followed by renal clearance, which together significantly lower off-target background signals and potential toxicity. To demonstrate its applicability, this multispectral imaging is performed in various tumor-bearing animal models including lung cancer, pancreatic neuroendocrine tumors, breast, and ovarian cancer.
Assuntos
Meios de Contraste , Neoplasias Pulmonares , Animais , Imagem Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho , Corantes FluorescentesRESUMO
Indocyanine green (ICG) has been used to detect several types of tumors; however, its ability to detect metastatic lymph nodes (LNs) remains unclear. Our goal was to determine the feasibility of ICG in detecting metastatic LNs. We established a mouse model and evaluated the potential of ICG. The feasibility of detecting metastatic LNs was also evaluated in patients with lung or esophageal cancer, detected with computed tomography (CT) or positron-emission tomography (PET)/CT, and scheduled to undergo surgical resection. Tumors and metastatic LNs were successfully detected in the mice. In the clinical study, the efficacy of ICG was evaluated in 15 tumors and fifty-four LNs with suspected metastasis or anatomically key regional LNs. All 15 tumors were successfully detected. Among the fifty-four LNs, eleven were pathologically confirmed to have metastasis; all eleven were detected in ICG fluorescence imaging, with five in CT and seven in PET/CT. Furthermore, thirty-four LNs with no signals were pathologically confirmed as nonmetastatic. Intravenous injection of ICG may be a useful tool to detect metastatic LNs and tumors. However, ICG is not a targeting agent, and its relatively low fluorescence makes it difficult to use to detect tumors in vivo. Therefore, further studies are needed to develop contrast agents and devices that produce increased fluorescence signals.