Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Obstet Gynecol ; 230(4): 443.e1-443.e18, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296740

RESUMO

BACKGROUND: Placenta accreta spectrum disorders are associated with severe maternal morbidity and mortality. Placenta accreta spectrum disorders involve excessive adherence of the placenta preventing separation at birth. Traditionally, this condition has been attributed to excessive trophoblast invasion; however, an alternative view is a fundamental defect in decidual biology. OBJECTIVE: This study aimed to gain insights into the understanding of placenta accreta spectrum disorder by using single-cell and spatially resolved transcriptomics to characterize cellular heterogeneity at the maternal-fetal interface in placenta accreta spectrum disorders. STUDY DESIGN: To assess cellular heterogeneity and the function of cell types, single-cell RNA sequencing and spatially resolved transcriptomics were used. A total of 12 placentas were included, 6 placentas with placenta accreta spectrum disorder and 6 controls. For each placenta with placenta accreta spectrum disorder, multiple biopsies were taken at the following sites: placenta accreta spectrum adherent and nonadherent sites in the same placenta. Of note, 2 platforms were used to generate libraries: the 10× Chromium and NanoString GeoMX Digital Spatial Profiler for single-cell and spatially resolved transcriptomes, respectively. Differential gene expression analysis was performed using a suite of bioinformatic tools (Seurat and GeoMxTools R packages). Correction for multiple testing was performed using Clipper. In situ hybridization was performed with RNAscope, and immunohistochemistry was used to assess protein expression. RESULTS: In creating a placenta accreta cell atlas, there were dramatic difference in the transcriptional profile by site of biopsy between placenta accreta spectrum and controls. Most of the differences were noted at the site of adherence; however, differences existed within the placenta between the adherent and nonadherent site of the same placenta in placenta accreta. Among all cell types, the endothelial-stromal populations exhibited the greatest difference in gene expression, driven by changes in collagen genes, namely collagen type III alpha 1 chain (COL3A1), growth factors, epidermal growth factor-like protein 6 (EGFL6), and hepatocyte growth factor (HGF), and angiogenesis-related genes, namely delta-like noncanonical Notch ligand 1 (DLK1) and platelet endothelial cell adhesion molecule-1 (PECAM1). Intraplacental tropism (adherent versus non-adherent sites in the same placenta) was driven by differences in endothelial-stromal cells with notable differences in bone morphogenic protein 5 (BMP5) and osteopontin (SPP1) in the adherent vs nonadherent site of placenta accreta spectrum. CONCLUSION: Placenta accreta spectrum disorders were characterized at single-cell resolution to gain insight into the pathophysiology of the disease. An atlas of the placenta at single cell resolution in accreta allows for understanding in the biology of the intimate maternal and fetal interaction. The contributions of stromal and endothelial cells were demonstrated through alterations in the extracellular matrix, growth factors, and angiogenesis. Transcriptional and protein changes in the stroma of placenta accreta spectrum shift the etiologic explanation away from "invasive trophoblast" to "loss of boundary limits" in the decidua. Gene targets identified in this study may be used to refine diagnostic assays in early pregnancy, track disease progression over time, and inform therapeutic discoveries.


Assuntos
Descolamento Prematuro da Placenta , Placenta Acreta , Doenças Placentárias , Gravidez , Feminino , Recém-Nascido , Humanos , Placenta Acreta/terapia , Células Endoteliais , Placenta/patologia , Doenças Placentárias/patologia , Peptídeos e Proteínas de Sinalização Intercelular , Decídua/patologia , Endotélio/patologia
2.
Cancer ; 127(21): 3957-3966, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34343338

RESUMO

BACKGROUND: Although renal cell carcinoma (RCC) is believed to have a strong hereditary component, there is a paucity of published guidelines for genetic risk assessment. A panel of experts was convened to gauge current opinions. METHODS: A North American multidisciplinary panel with expertise in hereditary RCC, including urologists, medical oncologists, clinical geneticists, genetic counselors, and patient advocates, was convened. Before the summit, a modified Delphi methodology was used to generate, review, and curate a set of consensus questions regarding RCC genetic risk assessment. Uniform consensus was defined as ≥85% agreement on particular questions. RESULTS: Thirty-three panelists, including urologists (n = 13), medical oncologists (n = 12), genetic counselors and clinical geneticists (n = 6), and patient advocates (n = 2), reviewed 53 curated consensus questions. Uniform consensus was achieved on 30 statements in specific areas that addressed for whom, what, when, and how genetic testing should be performed. Topics of consensus included the family history criteria, which should trigger further assessment, the need for risk assessment in those with bilateral or multifocal disease and/or specific histology, the utility of multigene panel testing, and acceptance of clinician-based counseling and testing by those who have experience with hereditary RCC. CONCLUSIONS: In the first ever consensus panel on RCC genetic risk assessment, 30 consensus statements were reached. Areas that require further research and discussion were also identified, with a second future meeting planned. This consensus statement may provide further guidance for clinicians when considering RCC genetic risk assessment. LAY SUMMARY: The contribution of germline genetics to the development of renal cell carcinoma (RCC) has long been recognized. However, there is a paucity of guidelines to define how and when genetic risk assessment should be performed for patients with known or suspected hereditary RCC. Without guidelines, clinicians struggle to define who requires further evaluation, when risk assessment or testing should be done, which genes should be considered, and how counseling and/or testing should be performed. To this end, a multidisciplinary panel of national experts was convened to gauge current opinion on genetic risk assessment in RCC and to enumerate a set of recommendations to guide clinicians when evaluating individuals with suspected hereditary kidney cancer.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Consenso , Testes Genéticos , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Medição de Risco
3.
Elife ; 122023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971339

RESUMO

Environmental cues, such as physical forces and heterotypic cell interactions play a critical role in cell function, yet their collective contributions to transcriptional changes are unclear. Focusing on human endothelial cells, we performed broad individual sample analysis to identify transcriptional drifts associated with environmental changes that were independent of genetic background. Global gene expression profiling by RNA sequencing and protein expression by liquid chromatography-mass spectrometry directed proteomics distinguished endothelial cells in vivo from genetically matched culture (in vitro) samples. Over 43% of the transcriptome was significantly changed by the in vitro environment. Subjecting cultured cells to long-term shear stress significantly rescued the expression of approximately 17% of genes. Inclusion of heterotypic interactions by co-culture of endothelial cells with smooth muscle cells normalized approximately 9% of the original in vivo signature. We also identified novel flow dependent genes, as well as genes that necessitate heterotypic cell interactions to mimic the in vivo transcriptome. Our findings highlight specific genes and pathways that rely on contextual information for adequate expression from those that are agnostic of such environmental cues.


Assuntos
Células Endoteliais , Perfilação da Expressão Gênica , Humanos , Células Endoteliais/metabolismo , Endotélio , Células Cultivadas , Técnicas de Cocultura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa