Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 24(13): 3178-3185, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29244897

RESUMO

Cathode configurations reported herein are alternative to the most diffused ones for application in lithium-oxygen batteries, using an ionic liquid-based electrolyte. The electrodes employ high surface area conductive carbon as the reaction host, and polytetrafluoroethylene as the binding agent to enhance the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) reversibility. Roll-pressed, self-standing electrodes (SSEs) and thinner, spray deposited electrodes (SDEs) are characterized in lithium-oxygen cells using an ionic liquid (IL) based electrolyte formed by mixing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt and N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethanesulfonyl)imide (DEMETFSI). The electrochemical results reveal reversible reactions for both electrode configurations, but improved electrochemical performance for the self-standing electrodes in lithium-oxygen cells. These electrodes show charge/discharge polarizations at 60 °C limited to 0.4 V, with capacity up to 1 mAh cm-2 and energy efficiency of about 88 %, while the spray deposited electrodes reveal, under the same conditions, a polarization of 0.6 V and energy efficiency of 80 %. The roll pressed electrode combined with the DEMETFSI-LiTFSI electrolyte and a composite Lix Sn-C alloy anode forms a full Li-ion oxygen cell showing extremely limited polarization, and remarkable energy efficiency.

2.
J Chem Phys ; 148(3): 031102, 2018 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-29352782

RESUMO

X-ray scattering measurements were utilized to probe the effects of pressure on a series of ionic liquids, N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr1A-TFSI) (A = 3, 6, and 9), along with mixtures of ionic liquid and 30 mol. % lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. No evidence was found for crystallization of the pure ionic liquids or salt mixtures even at pressures up to 9.2 GPa. No phase separation or demixing was observed for the ionic liquid and salt mixtures. Shifts in the peak positions are indicative of compression of the ionic liquids and mixtures up to 2 GPa, after which samples reach a region of relative incompressibility, possibly indicative of a transition to a glassy state. With the application of pressure, the intensity of the prepeak was found to decrease significantly, indicating a reduction in cation alkyl chain aggregation. Additionally, incompressibility of the scattering peak associated with the distance between like-charges in the pure ionic liquids compared to that in mixtures with lithium salt suggests that the application of pressure could inhibit Li+ coordination with TFSI- to form Li[TFSI2]- complexes. This inhibition occurs through the suppression of TFSI- in the trans conformer, in favor of the smaller cis conformer, at high pressures.

3.
J Phys Chem A ; 114(4): 1776-82, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-20058901

RESUMO

Four room-temperature ionic liquids (RTILs) based on the N-butyl-N-methyl pyrrolidinium (Pyr(14)(+)) and N-methyl-N-propyl pyrrolidinium cations (Pyr(13)(+)) and bis(trifluoromethanesulfonyl)imide (TFSI(-)) and bis(fluorosulfonyl)imide (FSI(-)) anions were intensively investigated during their melting. The diffusion coefficients of (1)H and (19)F were determined using pulsed field gradient (PFG) NMR to study the dynamics of the cations, anions, and ion pairs. The AC conductivities were measured to detect only the motion of the charged particles. The melting points of these ionic liquids were measured by DSC and verified by the temperature-dependent full width at half-maximum (FWHM) of the (1)H and (19)F NMR peaks. The diffusion and conductivity data at low temperatures gave information about the dynamics at the melting point and allowed specifying the way of melting. In addition, the diffusion coefficients of (1)H (D(H)) and (19)F (D(F)) and conductivity were correlated using the Nernst-Einstein equation with respect to the existence of ion pairs. Our results show that in dependence on the cation different melting behaviors were identified. In the Pyr(14)-based ILs, ion pairs exist, which collapse above the melting point of the sample. This is in contrast to the Pyr(13)-based ILs where the present ion pairs in the crystal dissociate during the melting. Furthermore, the anions do not influence the melting behavior of the investigated Pyr(14) systems but affect the Pyr(13) ILs. This becomes apparent in species with a higher mobility during the breakup of the crystalline IL.

4.
ACS Appl Mater Interfaces ; 11(25): 22278-22289, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31144802

RESUMO

Ionic liquids (ILs) are considered as appealing alternative electrolytes for application in rechargeable batteries, including next-generation sodium-ion batteries, because of their safe and eco-friendly nature, resulting from their extremely low volatility. In this work, two groups of advanced pyrrolidinium-based IL electrolytes are concerned, made by mixing sodium bis(fluorosulfonyl)imide (NaFSI) or sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) salts salts with N-methyl- N-propylpyrrolidinium bis(fluorosulfonyl)imide (Pyr13FSI), N-butyl- N-methylpyrrolidinium bis(fluorosulfonyl)imide (Pyr14FSI), and N-butyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr13FSI). The characterization of eight different electrolytes, including single anion electrolytes and binary anion mixtures, in terms of thermal properties, density, viscosity, and conductivity, as well as electrochemical stability window and cycling performance in room-temperature sodium cells, is reported here. Among all of the blends, those containing Pyr14FSI outperform the others in terms of cell performance enabling the layered P2-Na0.6Ni0.22Al0.11Mn0.66O2 cathode to deliver about 140 mAh g-1 for more than 200 cycles.

5.
ChemSusChem ; 12(1): 208-212, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30277019

RESUMO

Aluminum, a cost-effective and abundant metal capable of alloying with Li up to around 1000 mAh g-1 , is a very appealing anode material for high energy density lithium-ion batteries (LIBs). However, despite repeated efforts in the past three decades, reports presenting stable cycling performance are extremely rare. This study concerns recent findings on the highly reversible (de)lithiation of a micro-sized Al anode (m-Al) by using bis(fluorosulfonyl)imide (FSI)-based electrolytes. By using this kind of electrolyte, m-Al can deliver a specific capacity over 900 mAh g-1 and superior Coulombic efficiency (96.8 %) to traditional carbonate- and glyme-based electrolytes (87.8 % and 88.1 %, respectively), which represents the best performance ever obtained for an Al anode without sophisticated structure design. The significantly improved electrochemical performance, which paves the way to realizing high-performance Al-based high energy density LIBs, can be attributed the peculiar solid-electrolyte interphase (SEI) formed by the FSI-containing electrolyte.

6.
ChemSusChem ; 11(8): 1382-1389, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29468824

RESUMO

Aqueous Na-ion batteries may offer a solution to the cost and safety issues of high-energy batteries. However, substantial challenges remain in the development of electrode materials and electrolytes enabling high performance and long cycle life. Herein, we report the characterization of a symmetric Na-ion battery with a NASICON-type Na2 VTi(PO4 )3 electrode material in conventional aqueous and "water-in-salt" electrolytes. Extremely stable cycling performance for 1000 cycles at a high rate (20 C) is found with the highly concentrated aqueous electrolytes owing to the formation of a resistive but protective interphase between the electrode and electrolyte. These results provide important insight for the development of aqueous Na-ion batteries with stable long-term cycling performance for large-scale energy storage.

7.
Chem Commun (Camb) ; 54(34): 4278-4281, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632947

RESUMO

In binary ionic liquid/Li salt mixtures with the novel asymmetric anion FTFSI, electrophoretic mobility µi values of all ion species were determined using electrophoretic NMR. Li was determined to migrate in negatively charged Li-anion clusters towards the anode. This vehicular transport mechanism was shown to have decreasing relevance at elevated salt concentrations.

8.
ChemSusChem ; 11(12): 1981-1989, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29282874

RESUMO

The use of highly concentrated ionic liquid-based electrolytes results in improved rate capability and capacity retention at 20 °C compared to Li+ -dilute systems in Li-metal and Li-ion cells. This work explores the connection between the bulk electrolyte properties and the molecular organization to provide insight into the concentration dependence of the Li+ transport mechanisms. Below 30 mol %, the Li+ -containing species are primarily smaller complexes (one Li+ cation) and the Li+ ion transport is mostly derived from the vehicular transport. Above 30 mol %, where the viscosity is substantially higher and the conductivity lower, the Li+ -containing species are a mix of small and large complexes (one and more than one Li+ cation, respectively). The overall conduction mechanism likely changes to favor structural diffusion through the exchange of anions in the first Li+ solvation shell. The good rate performance is likely directly influenced by the presence of larger Li+ complexes, which promote Li+ -ion transport (as opposed to Li+ -complex transport) and increase the Li+ availability at the electrode.

9.
ChemSusChem ; 11(1): 229-236, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28960847

RESUMO

The room-temperature molten salt mixture of N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethanesulfonyl) imide ([DEME][TFSI]) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is herein reported as electrolyte for application in Li-O2 batteries. The [DEME][TFSI]-LiTFSI solution is studied in terms of ionic conductivity, viscosity, electrochemical stability, and compatibility with lithium metal at 30 °C, 40 °C, and 60 °C. The electrolyte shows suitable properties for application in Li-O2 battery, allowing a reversible, low-polarization discharge-charge performance with a capacity of about 13 Ah g-1carbon in the positive electrode and coulombic efficiency approaching 100 %. The reversibility of the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) is demonstrated by ex situ XRD and SEM studies. Furthermore, the study of the cycling behavior of the Li-O2 cell using the [DEME][TFSI]-LiTFSI electrolyte at increasing temperatures (from 30 to 60 °C) evidences enhanced energy efficiency together with morphology changes of the deposited species at the working electrode. In addition, the use of carbon-coated Zn0.9 Fe0.1 O (TMO-C) lithium-conversion anode in an ionic-liquid-based Li-ion/oxygen configuration is preliminarily demonstrated.


Assuntos
Fontes de Energia Elétrica , Eletrólitos/química , Éteres/química , Líquidos Iônicos/química , Compostos de Lítio/química , Oxigênio/química , Condutividade Elétrica , Técnicas Eletroquímicas/métodos , Microscopia Eletrônica de Varredura
10.
Korean J Intern Med ; 33(4): 716-726, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28859467

RESUMO

Background/Aims: Transradial intervention (TRI) is becoming the preferred method over transfemoral intervention (TFI) because TRI is associated with lower incidence of major bleeding and vascular complications. However, there has been limited published data regarding the clinical outcomes of TRI versus TFI in Korean patients with ST-elevation myocardial infarction (STEMI). METHODS: A total of 689 consecutive STEMI patients who underwent primary percutaneous coronary intervention (PCI) with drug-eluting stents (DESs) from January to December of 2009 at nine university hospitals were enrolled in this study. Mid-term angiographic and 12-month cumulative clinical outcomes of the TRI group (n = 220, 31.9%) were compared to those of the TFI group (n = 469, 28.1%). RESULTS: After propensity score matching, in-hospital complications and the 12-month major clinical outcomes during follow-up in the two groups were similar to each other. However, the incidence rates of repeat revascularization (6.4% vs. 0.5%, p = 0.003), target vessel revascularization (6.4% vs. 0.5%, p = 0.003), and major adverse cardiac events (MACE; 11.6% vs. 4.6%, p = 0.018) in the TFI group were higher than those in the TRI group during the 12-month of follow-up. Conclusions: In our study, TRI in STEMI patients undergoing primary PCI with DESs was associated with lower incidence of access site hematoma, 12-month repeat revascularization, and MACE compared to TFI. Therefore, TRI might play an important role in reducing bleeding complications while improving major clinical outcomes in STEMI patients undergoing primary PCI with DESs.


Assuntos
Infarto do Miocárdio , Intervenção Coronária Percutânea , Idoso , Feminino , Artéria Femoral , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/terapia , Intervenção Coronária Percutânea/métodos , Artéria Radial , Estudos Retrospectivos , Resultado do Tratamento
11.
ChemSusChem ; 10(15): 3146-3159, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28643934

RESUMO

The use of ionic liquids (ILs) as advanced electrolyte components in electrochemical energy-storage devices is one of the most appealing and emerging options. However, although ILs are hailed as safer and eco-friendly electrolytes, to overcome the limitations imposed by the highly volatile/combustible carbonate-based electrolytes, full-scale and precise appraisal of their overall safety levels under abuse conditions still needs to be fully addressed. With the aim of providing this level of information on the thermal and chemical stabilities, as well as actual fire hazards, herein, a detailed investigation of the short- and long-term thermal stabilities, biodegradability, and combustion behavior of various pyrrolidinium-based ILs, with different alkyl chain lengths, counteranions, and cations, as well as the effect of doping with lithium salts, is described.


Assuntos
Líquidos Iônicos/química , Lítio/química , Pirróis/química , Temperatura , Estabilidade de Medicamentos , Incêndios , Líquidos Iônicos/metabolismo
12.
ChemSusChem ; 9(1): 42-9, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26611916

RESUMO

As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, novel concepts are urgently needed concerning batteries that have high energy densities, low costs, and high levels of safety. Here, a novel eco-friendly energy storage system (ESS) using seawater and an ionic liquid is proposed for the first time; this represents an intermediate system between a battery and a fuel cell, and is accordingly referred to as a hybrid rechargeable cell. Compared to conventional organic electrolytes, the ionic liquid electrolyte significantly enhances the cycle performance of the seawater hybrid rechargeable system, acting as a very stable interface layer between the Sn-C (Na storage) anode and the NASICON (Na3 Zr2 Si2 PO12) ceramic solid electrolyte, making this system extremely promising for cost-efficient and environmentally friendly large-scale energy storage.


Assuntos
Fontes de Energia Elétrica , Eletrólitos/química , Líquidos Iônicos/química , Água do Mar/química , Cerâmica , Eletroquímica , Eletrodos , Microscopia Eletrônica de Varredura , Propriedades de Superfície
13.
ChemSusChem ; 9(5): 462-71, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26834069

RESUMO

We report a systematic investigation of Na-based electrolytes that comprise various NaX [X=hexafluorophosphate (PF6 ), perchlorate (ClO4 ), bis(trifluoromethanesulfonyl)imide (TFSI), fluorosulfonyl-(trifluoromethanesulfonyl)imide (FTFSI), and bis(fluorosulfonyl)imide (FSI)] salts and solvent mixtures [ethylene carbonate (EC)/dimethyl carbonate (DMC), EC/diethyl carbonate (DEC), and EC/propylene carbonate (PC)] with respect to the Al current collector stability, formation of soluble degradation compounds, reactivity towards sodiated hard carbon (Nax -HC), and solid-electrolyte interphase (SEI) layer formation. Cyclic voltammetry demonstrates that the stability of Al is highly influenced by the nature of the anions, solvents, and additives. GC-MS analysis reveals that the formation of SEI telltales depends on the nature of the linear alkyl carbonates and the battery chemistry (Li(+) vs. Na(+) ). FTIR spectroscopy shows that double alkyl carbonates are the main components of the SEI layer on Nax -HC. In the presence of Na salts, EC/DMC and EC/DEC presented a higher reactivity towards Nax -HC than EC/PC. For a fixed solvent mixture, the onset temperature follows the sequence NaClO4

Assuntos
Eletrólitos/química , Sódio/química , Varredura Diferencial de Calorimetria , Cromatografia Gasosa-Espectrometria de Massas , Íons , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa