Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Genomics ; 114(4): 110432, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35843383

RESUMO

Soyasaponin is a type of glycoside such as steroids, steroidal alkaloids or triterpenes, which enhance the body immunity. In order to efficiently identify genes and markers related to the soyasaponin, we used a 180K Axiom® SoyaSNP array and whole genome resequencing data from the Korean soybean core collection. As a result of conducting GWAS for group A soyasaponin (Aa and Ab derivatives), 16 significant common markers associated with Aa and Ab derivatives were mapped to chromosome 7, and three candidate genes including Glyma.07g254600 were detected. The functional haplotypes for candidate genes showed that Aa and Ab contents were mainly determined by alleles of AX-90322128, the marker of Glyma.07g254600. In addition, 14 novel SNPs variants closely associated with Aa and Ab derivatives were discovered for Glyma.07g254600. Therefore, the results of this study that identified soyasaponin-associated markers and useful genes utilizing various genomic information could provide insight into functional soybean breeding.


Assuntos
Glycine max , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/métodos , Melhoramento Vegetal , Locos de Características Quantitativas , Glycine max/genética
2.
Theor Appl Genet ; 134(8): 2687-2698, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33974087

RESUMO

KEY MESSAGE: The foxglove aphid resistance gene Raso2 from PI 366121 was fine-mapped to 77 Kb region, and one candidate gene was identified. The foxglove aphid (FA: Aulacorthum solani Kaltenbach) is an important insect pest that causes serious yield losses in soybean. The FA resistance gene Raso2 from wild soybean PI 366121 was previously mapped to a 13 cM interval on soybean chromosome 7. However, fine-mapping of Raso2 was needed to improve the effectiveness of marker-assisted selection (MAS) and to eventually clone it. The objectives of this study were to fine-map Raso2 from PI 366121 using Axiom® 180 K SoyaSNP array, to confirm the resistance and inheritance of Raso2 in a different background, and to identify candidate gene(s). The 105 F4:8 recombinant inbred lines were used to fine-map the gene and to test antibiosis and antixenosis of Raso2 to FA. These efforts resulted in the mapping of Raso2 on 1 cM interval which corresponds to 77 Kb containing eight annotated genes based on the Williams 82 reference genome assembly (Wm82.a2.v1). Interestingly, all nonsynonymous substitutions were in Glyma.07g077700 which encodes the disease resistance protein containing LRR domain and expression of the gene in PI 366121 was significantly higher than that in Williams 82. In addition, distinct SNPs within Glyma.07g077700 that can distinguish PI 366121 and diverse FA-susceptible soybeans were identified. We also confirmed that Raso2 presented the resistance to FA and the Mendelian inheritance for single dominant gene in a different background. The results of this study would provide fundamental information on MAS for development of FA-resistant cultivars as well as functional study and cloning of the candidate gene in soybean.


Assuntos
Afídeos/fisiologia , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Animais , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Glycine max/crescimento & desenvolvimento , Glycine max/parasitologia
3.
Mol Breed ; 41(1): 1, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37309526

RESUMO

Elucidation of the genomic organizations of transgene insertion sites is essential for the genetic studies of transgenic plants. Herein, we establish an analysis pipeline that identifies the transgene insertion sites as well as the presence of vector backbones, through de novo genome assembly with high-throughput sequencing data in two transgenic soybean lines, AtYUCCA6-#5 and 35S-UGT72E3/2-#7. Sequencing data of approximately 28× and 29× genome coverages for each line generated by high-throughput sequencing were de novo assembled. The databases generated from the de novo assembled sequences were used to search contigs that contained putative insertion sites and their flanking sequences (integration sites) of transgene fragments using transgenic vector sequences as queries. The predicted integration site sequences, which are located at three annotated genes that might regulate plant development or confer disease resistance, were then confirmed by local alignment against the soybean reference genome and PCR amplification. As results, we revealed the precise transgene-flanking sequences and sequence rearrangements at insertion sites in both the transgenic lines, as well as the aberrant insertion of a transgene fragment. Consequently, relative to experimental or enrichment technologies, our approach is straightforward and time-effective, providing an alternative method for the identification of insertion sites in transgenic plants.

4.
Genomics ; 112(2): 1481-1489, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31461668

RESUMO

Recombination is a crucial component of evolution and breeding. New combinations of variation on chromosomes are shaped by recombination. Recombination is also involved in chromosomal rearrangements. However, recombination rates vary tremendously among chromosome segments. Genome-wide genetic maps are one of the best tools to study variation of recombination. Here, we describe high density genetic maps of Glycine max and Glycine soja constructed from four segregating populations. The maps were used to identify chromosomal rearrangements and find the highly predictable pattern of cross-overs on the broad scale in soybean. Markers on these genetic maps were used to evaluate assembly quality of the current soybean reference genome sequence. We find a strong inversion candidate larger than 3 Mb based on patterns of cross-overs. We also identify quantitative trait loci (QTL) that control number of cross-overs. This study provides fundamental insights relevant to practical strategy for breeding programs and for pan-genome researches.


Assuntos
Cromossomos de Plantas/genética , Ligação Genética , Glycine max/genética , Troca Genética , Rearranjo Gênico , Melhoramento Vegetal , Locos de Características Quantitativas , Alinhamento de Sequência , Glycine max/classificação
5.
Theor Appl Genet ; 132(4): 1179-1193, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30588539

RESUMO

KEY MESSAGE: Genotyping data of a comprehensive Korean soybean collection obtained using a large SNP array were used to clarify global distribution patterns of soybean and address the evolutionary history of soybean. Understanding diversity and evolution of a crop is an essential step to implement a strategy to expand its germplasm base for crop improvement research. Accessions intensively collected from Korea, which is a small but central region in the distribution geography of soybean, were genotyped to provide sufficient data to underpin population genetic questions. After removing natural hybrids and duplicated or redundant accessions, we obtained a non-redundant set comprising 1957 domesticated and 1079 wild accessions to perform population structure analyses. Our analysis demonstrates that while wild soybean germplasm will require additional sampling from diverse indigenous areas to expand the germplasm base, the current domesticated soybean germplasm is saturated in terms of genetic diversity. We then showed that our genome-wide polymorphism map enabled us to detect genetic loci underlying flower color, seed-coat color, and domestication syndrome. A representative soybean set consisting of 194 accessions was divided into one domesticated subpopulation and four wild subpopulations that could be traced back to their geographic collection areas. Population genomics analyses suggested that the monophyletic group of domesticated soybeans was likely originated at a Japanese region. The results were further substantiated by a phylogenetic tree constructed from domestication-associated single nucleotide polymorphisms identified in this study.


Assuntos
Domesticação , Variação Genética , Glycine max/genética , Ecótipo , Genética Populacional , Estudo de Associação Genômica Ampla , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Sementes/genética
6.
Int J Mol Sci ; 20(1)2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609682

RESUMO

Branch number is one of the main factors affecting the yield of soybean (Glycine max (L.)). In this study, we conducted a genome-wide association study combined with linkage analysis for the identification of a candidate gene controlling soybean branching. Five quantitative trait nucleotides (QTNs) were associated with branch numbers in a soybean core collection. Among these QTNs, a linkage disequilibrium (LD) block qtnBR6-1 spanning 20 genes was found to overlap a previously identified major quantitative trait locus qBR6-1. To validate and narrow down qtnBR6-1, we developed a set of near-isogenic lines (NILs) harboring high-branching (HB) and low-branching (LB) alleles of qBR6-1, with 99.96% isogenicity and different branch numbers. A cluster of single nucleotide polymorphisms (SNPs) segregating between NIL-HB and NIL-LB was located within the qtnBR6-1 LD block. Among the five genes showing differential expression between NIL-HB and NIL-LB, BRANCHED1 (BRC1; Glyma.06G210600) was down-regulated in the shoot apex of NIL-HB, and one missense mutation and two SNPs upstream of BRC1 were associated with branch numbers in 59 additional soybean accessions. BRC1 encodes TEOSINTE-BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORS 1 and 2 transcription factor and functions as a regulatory repressor of branching. On the basis of these results, we propose BRC1 as a candidate gene for branching in soybean.


Assuntos
Produtos Agrícolas/genética , Glycine max/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fatores de Transcrição/genética , Produtos Agrícolas/crescimento & desenvolvimento , Desequilíbrio de Ligação , Proteínas de Plantas/metabolismo , Característica Quantitativa Herdável , Glycine max/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo
7.
Theor Appl Genet ; 130(8): 1685-1692, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28516383

RESUMO

KEY MESSAGE: A high-resolution genetic map that was constructed for the Lf1 -residing region will provide valuable information for map-based cloning and genetic improvement efforts in soybean. Changes in leaf architecture as photosynthesis factories remain a major challenge for the improvement of crop productivity. Unlike most soybeans, which have compound leaves comprising three leaflets, the soybean Lf1 mutant has a high frequency of compound leaves with five leaflets in a partially dominant manner. Here, we generated a fine genetic map to determine the genetic basis of this multifoliolate leaf trait. A five-leaflet variant Dusam was found in a recently collected landrace cultivar. Phenotypic data were collected from the F2 population of a cross between the Dusam and three-leaflet cultivar V94-5152. The mapping results generated using public markers indicated that the five-leaflet determining gene in Dusam is an allele of the previously studied Lf1 gene on chromosome 8. A high-resolution map delimited the genomic region controlling the leaflet number trait to a sequence length of 49 kb. AP2 domain-containing Glyma.08g281900 annotated in this 49 kb region appeared to be a strong candidate for the Lf1-encoding gene, as members of the AP2-type transcription factor family regulate lateral organ development. Dusam additionally exhibits visually distinct phenotypes for shattering and seed-coat cracking traits. However, the two traits were clearly unlinked to the Lf1 gene in our mapping population. Interestingly, the mapping results suggest that the Lf1 gene most likely exerts a pleiotropic effect on the number of seeds per pod. Thus, our results provide a strong foundation towards the cloning of this compound leaf development gene and marker-assisted selection of the seeds per pod trait.


Assuntos
Glycine max/genética , Folhas de Planta/crescimento & desenvolvimento , Alelos , Mapeamento Cromossômico , Genes de Plantas , Ligação Genética , Fenótipo , Sementes/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento
8.
Plant J ; 81(4): 625-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25641104

RESUMO

Cultivated soybean (Glycine max) suffers from a narrow germplasm relative to other crop species, probably because of under-use of wild soybean (Glycine soja) as a breeding resource. Use of a single nucleotide polymorphism (SNP) genotyping array is a promising method for dissecting cultivated and wild germplasms to identify important adaptive genes through high-density genetic mapping and genome-wide association studies. Here we describe a large soybean SNP array for use in diversity analyses, linkage mapping and genome-wide association analyses. More than four million high-quality SNPs identified from high-depth genome re-sequencing of 16 soybean accessions and low-depth genome re-sequencing of 31 soybean accessions were used to select 180,961 SNPs for creation of the Axiom(®) SoyaSNP array. Validation analysis for a set of 222 diverse soybean lines showed that 170,223 markers were of good quality for genotyping. Phylogenetic and allele frequency analyses of the validation set data indicated that accessions showing an intermediate morphology between cultivated and wild soybeans collected in Korea were natural hybrids. More than 90 unanchored scaffolds in the current soybean reference sequence were assigned to chromosomes using this array. Finally, dense average spacing and preferential distribution of the SNPs in gene-rich chromosomal regions suggest that this array may be suitable for genome-wide association studies of soybean germplasm. Taken together, these results suggest that use of this array may be a powerful method for soybean genetic analyses relating to many aspects of soybean breeding.


Assuntos
Técnicas de Genotipagem , Glycine max/genética , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Hibridização Genética , Análise de Sequência com Séries de Oligonucleotídeos
9.
Theor Appl Genet ; 129(3): 453-68, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26649868

RESUMO

KEY MESSAGE: Discovery of new germplasm sources and identification of haplotypes for the durable Soybean mosaic virus resistance gene, Rsv 4, provide novel resources for map-based cloning and genetic improvement efforts in soybean. The Soybean mosaic virus (SMV) resistance locus Rsv4 is of interest because it provides a durable type of resistance in soybean [Glycine max (L.) Merr.]. To better understand its molecular basis, we used a population of 309 BC3F2 individuals to fine-map Rsv4 to a ~120 kb interval and leveraged this genetic information in a second study to identify accessions 'Haman' and 'Ilpumgeomjeong' as new sources of Rsv4. These two accessions along with three other Rsv4 and 14 rsv4 accessions were used to examine the patterns of nucleotide diversity at the Rsv4 region based on high-depth resequencing data. Through a targeted association analysis of these 19 accessions within the ~120 kb interval, a cluster of four intergenic single-nucleotide polymorphisms (SNPs) was found to perfectly associate with SMV resistance. Interestingly, this ~120 kb interval did not contain any genes similar to previously characterized dominant disease resistance genes. Therefore, a haplotype analysis was used to further resolve the association signal to a ~94 kb region, which also resulted in the identification of at least two Rsv4 haplotypes. A haplotype phylogenetic analysis of this region suggests that the Rsv4 locus in G. max is recently introgressed from G. soja. This integrated study provides a strong foundation for efforts focused on the cloning of this durable virus resistance gene and marker-assisted selection of Rsv4-mediated SMV resistance in soybean breeding programs.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Glycine max/genética , Vírus do Mosaico/patogenicidade , Doenças das Plantas/genética , Alelos , Mapeamento Cromossômico , DNA de Plantas/genética , Haplótipos , Desequilíbrio de Ligação , Filogenia , Doenças das Plantas/virologia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Glycine max/virologia
10.
Plant Cell ; 24(12): 4807-18, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23243125

RESUMO

Narrow leaflet soybean (Glycine max) varieties tend to have more seeds per pod than broad leaflet varieties. Narrow leaflet in soybean is conferred by a single recessive gene, ln. Here, we show that the transition from broad (Ln) to narrow leaflet (ln) is associated with an amino acid substitution in the EAR motif encoded by a gene (designated Gm-JAGGED1) homologous to Arabidopsis JAGGED (JAG) that regulates lateral organ development and the variant exerts a pleiotropic effect on fruit patterning. The genomic region that regulates both the traits was mapped to a 12.6-kb region containing only one gene, Gm-JAG1. Introducing the Gm-JAG1 allele into a loss-of-function Arabidopsis jagged mutant partially restored the wild-type JAG phenotypes, including leaf shape, flower opening, and fruit shape, but the Gm-jag1 (ln) and EAR-deleted Gm-JAG1 alleles in the jagged mutant did not result in an apparent phenotypic change. These observations indicate that despite some degree of functional change of Gm-JAG1 due to the divergence from Arabidopsis JAG, Gm-JAG1 complemented the functions of JAG in Arabidopsis thaliana. However, the Gm-JAG1 homoeolog, Gm-JAG2, appears to be sub- or neofunctionalized, as revealed by the differential expression of the two genes in multiple plant tissues, a complementation test, and an allelic analysis at both loci.


Assuntos
Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Genoma de Planta/genética , Dados de Sequência Molecular , Folhas de Planta/genética , Proteínas de Plantas/genética , Sementes/genética , Glycine max/genética
11.
Theor Appl Genet ; 126(4): 1103-19, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23306355

RESUMO

Despite the intensive soybean [Glycine max (L.) Merrill] genome studies, the high chromosome number (20) of the soybean plant relative to many other major crops has hindered the development of a high-resolution genomewide genetic map derived from a single population. Here, we report such a map, which was constructed in an F15 population derived from a cross between G. max and G. soja lines using indel polymorphisms detected via a G. soja genome resequencing. By targeting novel indel markers to marker-poor regions, all marker intervals were reduced to under 6 cM on a genome scale. Comparison of the Williams 82 soybean reference genome sequence and our genetic map indicated that marker orders of 26 regions were discrepant with each other. In addition, our comparison showed seven misplaced and two absent markers in the current Williams 82 assembly and six markers placed on the scaffolds that were not incorporated into the pseudomolecules. Then, we showed that, by determining the missing sequences located at the presumed beginning points of the five major discordant segments, these observed discordant regions are mostly errors in the Williams 82 assembly. Distributions of the recombination rates along the chromosomes were similar to those of other organisms. Genotyping of indel markers and genome resequencing of the two parental lines suggested that some marker-poor chromosomal regions may represent introgression regions, which appear to be prevalent in soybean. Given the even and dense distribution of markers, our genetic map can serve as a bridge between genomics research and breeding programs.


Assuntos
Cromossomos de Plantas/genética , Marcadores Genéticos/genética , Glycine max/genética , Hibridização Genética , Mapeamento Físico do Cromossomo/métodos , Sequência de Bases , Cruzamentos Genéticos , Genótipo , Mutação INDEL/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
12.
Proc Natl Acad Sci U S A ; 107(51): 22032-7, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21131573

RESUMO

The genome of soybean (Glycine max), a commercially important crop, has recently been sequenced and is one of six crop species to have been sequenced. Here we report the genome sequence of G. soja, the undomesticated ancestor of G. max (in particular, G. soja var. IT182932). The 48.8-Gb Illumina Genome Analyzer (Illumina-GA) short DNA reads were aligned to the G. max reference genome and a consensus was determined for G. soja. This consensus sequence spanned 915.4 Mb, representing a coverage of 97.65% of the G. max published genome sequence and an average mapping depth of 43-fold. The nucleotide sequence of the G. soja genome, which contains 2.5 Mb of substituted bases and 406 kb of small insertions/deletions relative to G. max, is ∼0.31% different from that of G. max. In addition to the mapped 915.4-Mb consensus sequence, 32.4 Mb of large deletions and 8.3 Mb of novel sequence contigs in the G. soja genome were also detected. Nucleotide variants of G. soja versus G. max confirmed by Roche Genome Sequencer FLX sequencing showed a 99.99% concordance in single-nucleotide polymorphism and a 98.82% agreement in insertion/deletion calls on Illumina-GA reads. Data presented in this study suggest that the G. soja/G. max complex may be at least 0.27 million y old, appearing before the relatively recent event of domestication (6,000∼9,000 y ago). This suggests that soybean domestication is complicated and that more in-depth study of population genetics is needed. In any case, genome comparison of domesticated and undomesticated forms of soybean can facilitate its improvement.


Assuntos
Variação Genética , Genoma de Planta/fisiologia , Glycine max/genética
13.
Plants (Basel) ; 12(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986992

RESUMO

The utilization of wild soybean germplasms in breeding programs increases genetic diversity, and they contain the rare alleles of traits of interest. Understanding the genetic diversity of wild germplasms is essential for determining effective strategies that can improve the economic traits of soybeans. Undesirable traits make it challenging to cultivate wild soybeans. This study aimed to construct a core subset of 1467 wild soybean accessions of the total population and analyze their genetic diversity to understand their genetic variations. Genome-wild association studies were conducted to detect the genetic loci underlying the time to flowering for a core subset collection, and they revealed the allelic variation in E genes for predicting maturity using the available resequencing data of wild soybean. Based on principal component and cluster analyses, 408 wild soybean accessions in the core collection covered the total population and were explained by 3 clusters representing the collection regions, namely, Korea, China, and Japan. Most of the wild soybean collections in this study had the E1e2E3 genotype according to association mapping and a resequencing analysis. Korean wild soybean core collections can provide helpful genetic resources to identify new flowering and maturity genes near the E gene loci and genetic materials for developing new cultivars, facilitating the introgression of genes of interest from wild soybean.

14.
Plants (Basel) ; 12(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37111888

RESUMO

Soybean (Glycine max L.) is a globally important source of plant proteins, oils, and amino acids for both humans and livestock. Wild soybean (Glycine soja Sieb. and Zucc.), the ancestor of cultivated soybean, could be a useful genetic source for increasing these components in soybean crops. In this study, 96,432 single-nucleotide polymorphisms (SNPs) across 203 wild soybean accessions from the 180K Axiom® Soya SNP array were investigated using an association analysis. Protein and oil content exhibited a highly significant negative correlation, while the 17 amino acids exhibited a highly significant positive correlation with each other. A genome-wide association study (GWAS) was conducted on the protein, oil, and amino acid content using the 203 wild soybean accessions. A total of 44 significant SNPs were associated with protein, oil, and amino acid content. Glyma.11g015500 and Glyma.20g050300, which contained SNPs detected from the GWAS, were selected as novel candidate genes for the protein and oil content, respectively. In addition, Glyma.01g053200 and Glyma.03g239700 were selected as novel candidate genes for nine of the amino acids (Ala, Asp, Glu, Gly, Leu, Lys, Pro, Ser, and Thr). The identification of the SNP markers related to protein, oil, and amino acid content reported in the present study is expected to help improve the quality of selective breeding programs for soybeans.

15.
Planta ; 233(4): 807-15, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21212977

RESUMO

Gene flow from genetically modified (GM) crops to non-GM cultivars or weedy relatives may lead to the development of more aggressive weeds. We quantified the amount of gene flow from herbicide-tolerant GM rice (Protox GM, derived from the cultivar Dongjin) to three cultivars (Dongjin, Aranghyangchal and Hwaseong) and a weedy rice line. Gene flow frequency generally decreased with increasing distance from the pollen donor. At the shortest distance (0.5 m), we observed a maximum frequency (0.039%) of gene flow. We found that the cultivar Dongjin received the greatest amount of gene flow, with the second being weedy rice. Heterosis of F2 inbred progeny was also examined between Protox GM and weedy rice. We compared growth and reproduction between F2 progeny (homozygous or hemizygous for the Protox gene) and parental rice lines (GM and weedy rice). Here, transgene-homozygous F2 progeny was significantly taller and produced more seeds than the transgene-hemizygous F2 progeny and parental lines. Although the gene flow frequency was generally low, our results suggest that F2 progeny between GM and weedy relatives may exhibit heterosis.


Assuntos
Adaptação Fisiológica/genética , Cruzamentos Genéticos , Fluxo Gênico/genética , Herbicidas/toxicidade , Vigor Híbrido/genética , Oryza/efeitos dos fármacos , Oryza/genética , Análise de Variância , Flores/efeitos dos fármacos , Flores/genética , Hemizigoto , Homozigoto , Vigor Híbrido/efeitos dos fármacos , Hibridização Genética , Análise dos Mínimos Quadrados , Fenótipo , Plantas Geneticamente Modificadas , Transgenes/genética
16.
Theor Appl Genet ; 122(5): 875-84, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21104396

RESUMO

The rj1 mutation of soybean is a simple recessive allele in a single line that arose as a spontaneous mutation in a population; it exhibits non-nodulation with virtually all Bradyrhizobium and Sinorhizobium strains. Here, we described fine genetic and physical mapping of the rj1 locus on soybean chromosome 2. The initial mapping of the rj1 locus using public markers indicated that A343.p2, a sequence-based marker that contains sequence similar to a part of the LjNFR1 gene regulating nodule formation as a member of lysin motif-type receptor-like kinase (LYK) family, maps very close to or cosegregates with the rj1 locus. The sequence of A343.p2 is 100% identical to parts of two BAC clone sequences (GM_WBb0002O19 and GM_WBb098N11) that contain three members of the LYK family. We analyzed the sequence contig (262 kbp) of the two BAC clones by resequencing and subsequent fine genetic and physical mapping. The results indicated that rj1 is located in a gene-rich region with a recombination rate of 120 kbp/cM: several fold higher than the genome average. Among the LYK genes, NFR1α is most likely the gene encoded at the Rj1 locus. The non-nodulating rj1 allele was created by a single base-pair deletion that results in a premature stop codon. Taken together, the fine genetic and physical mapping of the Rj1-residing chromosomal region, combined with the unexpected observation of a putative recombination hotspot, allowed us to demonstrate that the Rj1 locus most likely encodes the NFR1α gene.


Assuntos
Motivos de Aminoácidos , Glycine max/genética , Mutação , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Alelos , Sequência de Bases , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes Recessivos , Loci Gênicos , Genótipo , Lisina/genética , Dados de Sequência Molecular , Fosfotransferases/metabolismo , Análise de Sequência de DNA
17.
Theor Appl Genet ; 122(5): 865-74, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21104397

RESUMO

Narrow leaflet cultivars tend to have more seeds per pod than broad leaflet cultivars in soybean [Glycine max (L.) Merr.], which suggests that the leaflet-shape trait locus is tightly linked to or cosegregates with the trait locus controlling the number of seeds per pod (NSPP). Here, we attempted to further elucidate the relationship between leaflet shape and NSPP. A BC(3)F(2) population from a cross between the 'Sowon' (narrow leaflets and high NSPP) and 'V94-5152' (broad leaflets and low NSPP) variants was used. The results of the molecular genetic analyses indicated that, although the NSPP characteristic, in particular, the occurrence of 4-seeded pods, is governed by additional modifying genes that are likely present in Sowon, the two traits cosegregate in the BC(3)F(2) population. The mapping results generated using public markers demonstrated that the narrow leaflet-determining gene in Sowon is an allele of the previously highly studied ln gene on chromosome 20. A high-resolution map delimited the genomic region controlling both the leaflet shape and NSPP traits to a sequence length of 66 kb, corresponding to 0.7 cM. Among the three genes annotated in this 66 kb region, Glyma20g25000.1 appeared to be a good candidate for the Ln-encoding gene, owing to its 47.8% homology with the protein encoding for the JAGGED gene that regulates lateral organ development in Arabidopsis. Taken together, our results suggested that phenotypic variations for narrow leaflet and NSPP are predominantly from the pleiotropic effects of the ln gene. Thus, our results should provide a molecular framework for soybean breeding programs with the objective of improving soybean yield.


Assuntos
Mapeamento Cromossômico , Genoma de Planta , Glycine max/crescimento & desenvolvimento , Glycine max/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Alelos , Proteínas de Arabidopsis/genética , Cruzamento , Proteínas de Ciclo Celular/genética , Cromossomos de Plantas/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fenótipo , Locos de Características Quantitativas
18.
G3 (Bethesda) ; 11(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34568925

RESUMO

Massive resequencing efforts have been undertaken to catalog allelic variants in major crop species including soybean, but the scope of the information for genetic variation often depends on short sequence reads mapped to the extant reference genome. Additional de novo assembled genome sequences provide a unique opportunity to explore a dispensable genome fraction in the pan-genome of a species. Here, we report the de novo assembly and annotation of Hwangkeum, a popular soybean cultivar in Korea. The assembly was constructed using PromethION nanopore sequencing data and two genetic maps and was then error-corrected using Illumina short-reads and PacBio SMRT reads. The 933.12 Mb assembly was annotated as containing 79,870 transcripts for 58,550 genes using RNA-Seq data and the public soybean annotation set. Comparison of the Hwangkeum assembly with the Williams 82 soybean reference genome sequence (Wm82.a2.v1) revealed 1.8 million single-nucleotide polymorphisms, 0.5 million indels, and 25 thousand putative structural variants. However, there was no natural megabase-scale chromosomal rearrangement. Incidentally, by adding two novel subfamilies, we found that soybean contains four clearly separated subfamilies of centromeric satellite repeats. Analyses of satellite repeats and gene content suggested that the Hwangkeum assembly is a high-quality assembly. This was further supported by comparison of the marker arrangement of anthocyanin biosynthesis genes and of gene arrangement at the Rsv3 locus. Therefore, the results indicate that the de novo assembly of Hwangkeum is a valuable additional reference genome resource for characterizing traits for the improvement of this important crop species.


Assuntos
Fabaceae , Glycine max , Alelos , Sequenciamento de Nucleotídeos em Larga Escala , República da Coreia , Glycine max/genética
19.
Sci Total Environ ; 762: 143073, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33189381

RESUMO

Pollen-mediated gene flow of genetically modified crops to their wild relatives can facilitate the spread of transgenes into the ecosystem and alter the fitness of the consequential progeny. A two-year field study was conducted to quantify the gene flow from glufosinate-ammonium resistant (GR) soybean (Glycinemax) to its wild relative, wild soybean (G. soja), and assess the potential weed risk of hybrids resulting from the gene flow during their entire life cycle under field conditions in Korea, where wild soybean is the natural inhabitant. Pollen-mediated gene flow from GR soybeans to wild soybeans ranged from 0.292% (mixed planting) to 0.027% at 8 m distance. The log-logistic model described the gene flow rate with increasing distance from GR soybean to wild soybean; the estimated effective isolation distance for 0.01% gene flow between GR and wild soybeans was 37.7 m. The F1 and F2 hybrids exhibited the intermediate characteristics of their parental soybeans in their vegetative and reproductive stages. Canopy height and stem length of hybrids were close to those of wild soybean, which shows an indeterminate growth; the numbers of flowers, pods, and seeds per hybrid plant were close to those of wild soybean and significantly higher than those of GR soybean. Seed longevity of F2 hybrid plants was also intermediate but significantly greater than that of GR soybean due to high seed dormancy. Our results suggest that transgenes of the GR soybean might disperse into wild populations and persist in the agroecosystem of the genetic origin regions due to the pollen-mediated gene flow and the relatively high fitness of the hybrid progeny.


Assuntos
Fluxo Gênico , Glycine max , Aminobutiratos , Produtos Agrícolas/genética , Ecossistema , Plantas Geneticamente Modificadas/genética , Pólen/genética , República da Coreia , Medição de Risco , Glycine max/genética
20.
Nat Commun ; 12(1): 97, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397978

RESUMO

Globally, soybean is a major protein and oil crop. Enhancing our understanding of the soybean domestication and improvement process helps boost genomics-assisted breeding efforts. Here we present a genome-wide variation map of 10.6 million single-nucleotide polymorphisms and 1.4 million indels for 781 soybean individuals which includes 418 domesticated (Glycine max), 345 wild (Glycine soja), and 18 natural hybrid (G. max/G. soja) accessions. We describe the enhanced detection of 183 domestication-selective sweeps and the patterns of putative deleterious mutations during domestication and improvement. This predominantly selfing species shows 7.1% reduction of overall deleterious mutations in domesticated soybean relative to wild soybean and a further 1.4% reduction from landrace to improved accessions. The detected domestication-selective sweeps also show reduced levels of deleterious alleles. Importantly, genotype imputation with this resource increases the mapping resolution of genome-wide association studies for seed protein and oil traits in a soybean diversity panel.


Assuntos
Domesticação , Glycine max/genética , Mutação/genética , Cromossomos de Plantas/genética , Bases de Dados Genéticas , Variação Genética , Genética Populacional , Genoma de Planta , Estudo de Associação Genômica Ampla , Haplótipos/genética , Filogenia , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa