Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 46(4): 2041-2053, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38039177

RESUMO

Converging evidence indicates that deep neural network models that are trained on large datasets are biased toward color and texture information. Humans, on the other hand, can easily recognize objects and scenes from images as well as from bounding contours. Mid-level vision is characterized by the recombination and organization of simple primary features into more complex ones by a set of so-called Gestalt grouping rules. While described qualitatively in the human literature, a computational implementation of these perceptual grouping rules is so far missing. In this article, we contribute a novel set of algorithms for the detection of contour-based cues in complex scenes. We use the medial axis transform (MAT) to locally score contours according to these grouping rules. We demonstrate the benefit of these cues for scene categorization in two ways: (i) Both human observers and CNN models categorize scenes most accurately when perceptual grouping information is emphasized. (ii) Weighting the contours with these measures boosts performance of a CNN model significantly compared to the use of unweighted contours. Our work suggests that, even though these measures are computed directly from contours in the image, current CNN models do not appear to extract or utilize these grouping cues.

2.
IEEE Trans Pattern Anal Mach Intell ; 29(12): 2089-104, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17934220

RESUMO

Local image features have been designed to be informative and repeatable under rigid transformations and illumination deformations. Even though current state-of-the-art local image features present a high degree of repeatability, their local appearance alone usually does not bring enough discriminative power to support a reliable matching, resulting in a relatively high number of mismatches in the correspondence set formed during the data association procedure. As a result, geometric filters, commonly based on global spatial configuration, have been used to reduce this number of mismatches. However, this approach presents a trade off between the effectiveness to reject mismatches and the robustness to non-rigid deformations. In this paper, we propose two geometric filters, based on semilocal spatial configuration of local features, that are designed to be robust to non-rigid deformations and to rigid transformations, without compromising its efficacy to reject mismatches. We compare our methods to the Hough transform, which is an efficient and effective mismatch rejection step based on global spatial configuration of features. In these comparisons, our methods are shown to be more effective in the task of rejecting mismatches for rigid transformations and non-rigid deformations at comparable time complexity figures. Finally, we demonstrate how to integrate these methods in a probabilistic recognition system such that the final verification step uses not only the similarity between features, but also their semi-local configuration.


Assuntos
Algoritmos , Inteligência Artificial , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Simulação por Computador , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa