Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(49): e2306381120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38019867

RESUMO

Inteins are self-splicing protein elements found in viruses and all three domains of life. How the DNA encoding these selfish elements spreads within and between genomes is poorly understood, particularly in eukaryotes where inteins are scarce. Here, we show that the nuclear genomes of three strains of Anaeramoeba encode between 45 and 103 inteins, in stark contrast to four found in the most intein-rich eukaryotic genome described previously. The Anaeramoeba inteins reside in a wide range of proteins, only some of which correspond to intein-containing proteins in other eukaryotes, prokaryotes, and viruses. Our data also suggest that viruses have contributed to the spread of inteins in Anaeramoeba and the colonization of new alleles. The persistence of Anaeramoeba inteins might be partly explained by intragenomic movement of intein-encoding regions from gene to gene. Our intein dataset greatly expands the spectrum of intein-containing proteins and provides insights into the evolution of inteins in eukaryotes.


Assuntos
Inteínas , Processamento de Proteína , Inteínas/genética , Eucariotos/genética , Proteínas/genética , Genoma
2.
Nucleic Acids Res ; 51(9): 4572-4587, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987847

RESUMO

RNA-binding proteins (RPBs) are deeply involved in fundamental cellular processes in bacteria and are vital for their survival. Despite this, few studies have so far been dedicated to direct and global identification of bacterial RBPs. We have adapted the RNA interactome capture (RIC) technique, originally developed for eukaryotic systems, to globally identify RBPs in bacteria. RIC takes advantage of the base pairing potential of poly(A) tails to pull-down RNA-protein complexes. Overexpressing poly(A) polymerase I in Escherichia coli drastically increased transcriptome-wide RNA polyadenylation, enabling pull-down of crosslinked RNA-protein complexes using immobilized oligo(dT) as bait. With this approach, we identified 169 putative RBPs, roughly half of which are already annotated as RNA-binding. We experimentally verified the RNA-binding ability of a number of uncharacterized RBPs, including YhgF, which is exceptionally well conserved not only in bacteria, but also in archaea and eukaryotes. We identified YhgF RNA targets in vivo using CLIP-seq, verified specific binding in vitro, and reveal a putative role for YhgF in regulation of gene expression. Our findings present a simple and robust strategy for RBP identification in bacteria, provide a resource of new bacterial RBPs, and lay the foundation for further studies of the highly conserved RBP YhgF.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , RNA Bacteriano , Proteínas de Ligação a RNA , Sequenciamento de Cromatina por Imunoprecipitação , Escherichia coli/genética , Escherichia coli/metabolismo , Eucariotos , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/metabolismo , Transcriptoma , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , Poliadenilação , Ligação Proteica
3.
Genomics ; 114(5): 110462, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35998788

RESUMO

Giardia lamblia encodes several families of cysteine-rich proteins, including the Variant-specific Surface Proteins (VSPs) involved in the process of antigenic variation. Their characteristics, definition and relationships are still controversial. An exhaustive analysis of the Cys-rich families including organization, features, evolution and levels of expression was performed, by combining pattern searches and predictions with massive sequencing techniques. Thus, a new classification for Cys-rich proteins, genes and pseudogenes that better describes their involvement in Giardia's biology is presented. Moreover, three novel characteristics exclusive to the VSP genes, comprising an Initiator element/Kozak-like sequence, an extended polyadenylation signal and a unique pattern of mutually exclusive transcript accumulation are presented, as well as the finding that High Cysteine Membrane Proteins, upregulated under stress, may protect the parasite during VSP switching. These results allow better interpretation of previous reports providing the basis for further studies of the biology of this early-branching eukaryote.


Assuntos
Giardia lamblia , Variação Antigênica/genética , Antígenos de Protozoários , Antígenos de Superfície/genética , Cisteína/genética , Giardia lamblia/genética , Giardia lamblia/metabolismo , Proteínas de Membrana/genética , Proteínas de Protozoários/genética
4.
Mol Biol Evol ; 37(5): 1329-1341, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31977019

RESUMO

Mobile genetic elements, such as plasmids, phages, and transposons, are important sources for evolution of novel functions. In this study, we performed a large-scale screening of metagenomic phage libraries for their ability to suppress temperature-sensitivity in Salmonella enterica serovar Typhimurium strain LT2 mutants to examine how phage DNA could confer evolutionary novelty to bacteria. We identified an insert encoding 23 amino acids from a phage that when fused with a bacterial DNA-binding repressor protein (LacI) resulted in the formation of a chimeric protein that localized to the outer membrane. This relocalization of the chimeric protein resulted in increased membrane vesicle formation and an associated suppression of the temperature sensitivity of the bacterium. Both the host LacI protein and the extracellular 23-amino acid stretch are necessary for the generation of the novel phenotype. Furthermore, mutational analysis of the chimeric protein showed that although the native repressor function of the LacI protein is maintained in this chimeric structure, it is not necessary for the new function. Thus, our study demonstrates how a gene fusion between foreign DNA and bacterial DNA can generate novelty without compromising the native function of a given gene.


Assuntos
DNA Viral , Fusão Gênica , Repressores Lac/genética , Salmonella typhimurium/genética , Bacteriófagos , Membrana Celular/metabolismo , Repressores Lac/metabolismo , Proteínas Mutantes Quiméricas , Mutação , Fenótipo , Salmonella typhimurium/virologia , Temperatura
5.
BMC Biol ; 17(1): 19, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30823887

RESUMO

BACKGROUND: Spironucleus salmonicida is an anaerobic parasite that can cause systemic infections in Atlantic salmon. Unlike other diplomonad parasites, such as the human pathogen Giardia intestinalis, Spironucleus species can infiltrate the blood stream of their hosts eventually colonizing organs, skin and gills. How this presumed anaerobe can persist and invade oxygenated tissues, despite having a strictly anaerobic metabolism, remains elusive. RESULTS: To investigate how S. salmonicida response to oxygen stress, we performed RNAseq transcriptomic analyses of cells grown in the presence of oxygen or antioxidant-free medium. We found that over 20% of the transcriptome is differentially regulated in oxygen (1705 genes) and antioxidant-depleted (2280 genes) conditions. These differentially regulated transcripts encode proteins related to anaerobic metabolism, cysteine and Fe-S cluster biosynthesis, as well as a large number of proteins of unknown function. S. salmonicida does not encode genes involved in the classical elements of oxygen metabolism (e.g., catalases, superoxide dismutase, glutathione biosynthesis, oxidative phosphorylation). Instead, we found that genes encoding bacterial-like oxidoreductases were upregulated in response to oxygen stress. Phylogenetic analysis revealed some of these oxygen-responsive genes (e.g., nadh oxidase, rubrerythrin, superoxide reductase) are rare in eukaryotes and likely derived from lateral gene transfer (LGT) events into diplomonads from prokaryotes. Unexpectedly, we observed that many host evasion- and invasion-related genes were also upregulated under oxidative stress suggesting that oxygen might be an important signal for pathogenesis. CONCLUSION: While oxygen is toxic for related organisms, such as G. intestinalis, we find that oxygen is likely a gene induction signal for host invasion- and evasion-related pathways in S. salmonicida. These data provide the first molecular evidence for how S. salmonicida could tolerate oxic host environments and demonstrate how LGT can have a profound impact on the biology of anaerobic parasites.


Assuntos
Anaerobiose/genética , Diplomonadida/genética , Oxigênio/administração & dosagem , Estresse Fisiológico/genética , Animais , Diplomonadida/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Salmão/parasitologia
6.
PLoS Genet ; 10(2): e1004053, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516394

RESUMO

Spironucleus salmonicida causes systemic infections in salmonid fish. It belongs to the group diplomonads, binucleated heterotrophic flagellates adapted to micro-aerobic environments. Recently we identified energy-producing hydrogenosomes in S. salmonicida. Here we present a genome analysis of the fish parasite with a focus on the comparison to the more studied diplomonad Giardia intestinalis. We annotated 8067 protein coding genes in the ∼12.9 Mbp S. salmonicida genome. Unlike G. intestinalis, promoter-like motifs were found upstream of genes which are correlated with gene expression, suggesting a more elaborate transcriptional regulation. S. salmonicida can utilise more carbohydrates as energy sources, has an extended amino acid and sulfur metabolism, and more enzymes involved in scavenging of reactive oxygen species compared to G. intestinalis. Both genomes have large families of cysteine-rich membrane proteins. A cluster analysis indicated large divergence of these families in the two diplomonads. Nevertheless, one of S. salmonicida cysteine-rich proteins was localised to the plasma membrane similar to G. intestinalis variant-surface proteins. We identified S. salmonicida homologs to cyst wall proteins and showed that one of these is functional when expressed in Giardia. This suggests that the fish parasite is transmitted as a cyst between hosts. The extended metabolic repertoire and more extensive gene regulation compared to G. intestinalis suggest that the fish parasite is more adapted to cope with environmental fluctuations. Our genome analyses indicate that S. salmonicida is a well-adapted pathogen that can colonize different sites in the host.


Assuntos
Diplomonadida/genética , Peixes/genética , Genoma , Análise de Sequência de DNA , Animais , Diplomonadida/patogenicidade , Meio Ambiente , Peixes/parasitologia , Interações Hospedeiro-Parasita/genética , Anotação de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio
7.
BMC Biol ; 14: 62, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27480115

RESUMO

BACKGROUND: It is generally thought that the evolutionary transition to parasitism is irreversible because it is associated with the loss of functions needed for a free-living lifestyle. Nevertheless, free-living taxa are sometimes nested within parasite clades in phylogenetic trees, which could indicate that they are secondarily free-living. Herein, we test this hypothesis by studying the genomic basis for evolutionary transitions between lifestyles in diplomonads, a group of anaerobic eukaryotes. Most described diplomonads are intestinal parasites or commensals of various animals, but there are also free-living diplomonads found in oxygen-poor environments such as marine and freshwater sediments. All these nest well within groups of parasitic diplomonads in phylogenetic trees, suggesting that they could be secondarily free-living. RESULTS: We present a transcriptome study of Trepomonas sp. PC1, a diplomonad isolated from marine sediment. Analysis of the metabolic genes revealed a number of proteins involved in degradation of the bacterial membrane and cell wall, as well as an extended set of enzymes involved in carbohydrate degradation and nucleotide metabolism. Phylogenetic analyses showed that most of the differences in metabolic capacity between free-living Trepomonas and the parasitic diplomonads are due to recent acquisitions of bacterial genes via gene transfer. Interestingly, one of the acquired genes encodes a ribonucleotide reductase, which frees Trepomonas from the need to scavenge deoxyribonucleosides. The transcriptome included a gene encoding squalene-tetrahymanol cyclase. This enzyme synthesizes the sterol substitute tetrahymanol in the absence of oxygen, potentially allowing Trepomonas to thrive under anaerobic conditions as a free-living bacterivore, without depending on sterols from other eukaryotes. CONCLUSIONS: Our findings are consistent with the phylogenetic evidence that the last common ancestor of diplomonads was dependent on a host and that Trepomonas has adapted secondarily to a free-living lifestyle. We believe that similar studies of other groups where free-living taxa are nested within parasites could reveal more examples of secondarily free-living eukaryotes.


Assuntos
Adaptação Fisiológica/genética , Diplomonadida/genética , Diplomonadida/fisiologia , Genes de Protozoários , Parasitos/genética , Parasitos/fisiologia , Animais , Parede Celular/metabolismo , Diplomonadida/enzimologia , Transferases Intramoleculares/genética , Funções Verossimilhança , Lisossomos/metabolismo , Parasitos/enzimologia , Filogenia , Transcriptoma/genética
8.
BMC Genomics ; 16: 697, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26370391

RESUMO

BACKGROUND: The diarrhea-causing protozoan Giardia intestinalis makes up a species complex of eight different assemblages (A-H), where assemblage A and B infect humans. Comparative whole-genome analyses of three of these assemblages have shown that there is significant divergence at the inter-assemblage level, however little is currently known regarding variation at the intra-assemblage level. We have performed whole genome sequencing of two sub-assemblage AII isolates, recently axenized from symptomatic human patients, to study the biological and genetic diversity within assemblage A isolates. RESULTS: Several biological differences between the new and earlier characterized assemblage A isolates were identified, including a difference in growth medium preference. The two AII isolates were of different sub-assemblage types (AII-1 [AS175] and AII-2 [AS98]) and showed size differences in the smallest chromosomes. The amount of genetic diversity was characterized in relation to the genome of the Giardia reference isolate WB, an assemblage AI isolate. Our analyses indicate that the divergence between AI and AII is approximately 1 %, represented by ~100,000 single nucleotide polymorphisms (SNP) distributed over the chromosomes with enrichment in variable genomic regions containing surface antigens. The level of allelic sequence heterozygosity (ASH) in the two AII isolates was found to be 0.25-0.35 %, which is 25-30 fold higher than in the WB isolate and 10 fold higher than the assemblage AII isolate DH (0.037 %). 35 protein-encoding genes, not found in the WB genome, were identified in the two AII genomes. The large gene families of variant-specific surface proteins (VSPs) and high cysteine membrane proteins (HCMPs) showed isolate-specific divergences of the gene repertoires. Certain genes, often in small gene families with 2 to 8 members, localize to the variable regions of the genomes and show high sequence diversity between the assemblage A isolates. One of the families, Bactericidal/Permeability Increasing-like protein (BPIL), with eight members was characterized further and the proteins were shown to localize to the ER in trophozoites. CONCLUSIONS: Giardia genomes are modular with highly conserved core regions mixed up by variable regions containing high levels of ASH, SNPs and variable surface antigens. There are significant genomic variations in assemblage A isolates, in terms of chromosome size, gene content, surface protein repertoire and gene polymorphisms and these differences mainly localize to the variable regions of the genomes. The large genetic differences within one assemblage of G. intestinalis strengthen the argument that the assemblages represent different Giardia species.


Assuntos
Genoma de Protozoário , Genômica , Giardia lamblia/genética , Alelos , Diarreia/parasitologia , Feminino , Genes de Protozoários , Estudo de Associação Genômica Ampla , Genômica/métodos , Genótipo , Giardia lamblia/classificação , Giardia lamblia/isolamento & purificação , Giardíase/parasitologia , Humanos , Família Multigênica , Filogenia , Polimorfismo de Nucleotídeo Único , Transporte Proteico
9.
PLoS Comput Biol ; 9(3): e1003000, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555231

RESUMO

Giardia intestinalis is a common cause of diarrheal disease and it consists of eight genetically distinct genotypes or assemblages (A-H). Only assemblages A and B infect humans and are suggested to represent two different Giardia species. Correlations exist between assemblage type and host-specificity and to some extent symptoms. Phenotypical differences have been documented between assemblages and genome sequences are available for A, B and E. We have characterized and compared the polyadenylated transcriptomes of assemblages A, B and E. Four genetically different isolates were studied (WB (AI), AS175 (AII), P15 (E) and GS (B)) using paired-end, strand-specific RNA-seq. Most of the genome was transcribed in trophozoites grown in vitro, but at vastly different levels. RNA-seq confirmed many of the present annotations and refined the current genome annotation. Gene expression divergence was found to recapitulate the known phylogeny, and uncovered lineage-specific differences in expression. Polyadenylation sites were mapped for over 70% of the genes and revealed many examples of conserved and unexpectedly long 3' UTRs. 28 open reading frames were found in a non-transcribed gene cluster on chromosome 5 of the WB isolate. Analysis of allele-specific expression revealed a correlation between allele-dosage and allele expression in the GS isolate. Previously reported cis-splicing events were confirmed and global mapping of cis-splicing identified only one novel intron. These observations can possibly explain differences in host-preference and symptoms, and it will be the basis for further studies of Giardia pathogenesis and biology.


Assuntos
Perfilação da Expressão Gênica/métodos , Giardia lamblia/genética , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Antígenos de Protozoários/genética , Biologia Computacional , Bases de Dados Genéticas , Regulação da Expressão Gênica , Giardia lamblia/metabolismo , Giardíase/parasitologia , Humanos , Filogenia , Poliadenilação , Proteínas de Protozoários/genética , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas
10.
Sci Data ; 11(1): 678, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909042

RESUMO

Dicytostelium firmibasis is a member of Dictyostelia, a group of social amoebae that upon starvation display aggregative multicellularity where the amoebae transition from uni- to multicellular life. The D. firmibasis genome assembly that is currently available is of limited use due to its low contiguity, large number of undetermined bases, and lack of annotations. Here we used Nanopore long read sequencing, complemented with Illumina sequencing, and developmental transcriptomics as well as small RNA-sequencing, to present a new, fully annotated, chromosome-level D. firmibasis genome assembly. The new assembly contains no undetermined bases, and consists mainly of six large contigs representing the chromosomes, as well as a complete mitochondrial genome. This new genome assembly will be a valuable tool, allowing comprehensive comparison to Dictyostelium discoideum, the dictyostelid genetically tractable model. Further, the new genome will be important for studies of evolutionary processes governing the transition from unicellular to multicellular organisms and will aid in the sequencing and annotation of other dictyostelids genomes, many of which are currently of poor quality.


Assuntos
Cromossomos , Dictyostelium , Genoma de Protozoário , Dictyostelium/genética , Anotação de Sequência Molecular
11.
Curr Biol ; 34(2): 451-459.e6, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38262350

RESUMO

"Kingdom-level" branches are being added to the tree of eukaryotes at a rate approaching one per year, with no signs of slowing down.1,2,3,4 Some are completely new discoveries, whereas others are morphologically unusual protists that were previously described but lacked molecular data. For example, Hemimastigophora are predatory protists with two rows of flagella that were known since the 19th century but proved to represent a new deep-branching eukaryote lineage when phylogenomic analyses were conducted.2Meteora sporadica5 is a protist with a unique morphology; cells glide over substrates along a long axis of anterior and posterior projections while a pair of lateral "arms" swing back and forth, a motility system without any obvious parallels. Originally, Meteora was described by light microscopy only, from a short-term enrichment of deep-sea sediment. A small subunit ribosomal RNA (SSU rRNA) sequence was reported recently, but the phylogenetic placement of Meteora remained unresolved.6 Here, we investigated two cultivated Meteora sporadica isolates in detail. Transmission electron microscopy showed that both the anterior-posterior projections and the arms are supported by microtubules originating from a cluster of subnuclear microtubule organizing centers (MTOCs). Neither have a flagellar axoneme-like structure. Sequencing the mitochondrial genome showed this to be among the most gene-rich known, outside jakobids. Remarkably, phylogenomic analyses of 254 nuclear protein-coding genes robustly support a close relationship with Hemimastigophora. Our study suggests that Meteora and Hemimastigophora together represent a morphologically diverse "supergroup" and thus are important for resolving the tree of eukaryote life and early eukaryote evolution.


Assuntos
Eucariotos , Células Eucarióticas , Filogenia , Flagelos , Microscopia Eletrônica de Transmissão
12.
Mol Biol Evol ; 29(10): 2895-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22474166

RESUMO

Giardia intestinalis is a major cause of waterborne enteric disease in humans. The species is divided into eight assemblages suggested to represent separate Giardia species based on host specificities and the genetic divergence of marker genes. We have investigated whether genome-wide recombination occurs between assemblages using the three available G. intestinalis genomes. First, the relative nonsynonymous substitution rates of the homologs were compared for 4,009 positional homologs. The vast majority of these comparisons indicate genetic isolation without interassemblage recombinations. Only a region of 6 kbp suggests genetic exchange between assemblages A and E, followed by gene conversion events. Second, recombination-detecting software fails to identify within-gene recombination between the different assemblages for most of the homologs. Our results indicate very low frequency of recombination between the syntenic core genes, suggesting that G. intestinalis assemblages are genetically isolated lineages and thus should be viewed as separated Giardia species.


Assuntos
Genoma/genética , Giardia lamblia/genética , Recombinação Genética/genética , Pareamento de Bases/genética , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
13.
Eukaryot Cell ; 11(11): 1353-61, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22983987

RESUMO

Eukaryotic microbes are highly diverse, and many lineages remain poorly studied. One such lineage, the diplomonads, a group of binucleate heterotrophic flagellates, has been studied mainly due to the impact of Giardia intestinalis, an intestinal, diarrhea-causing parasite in humans and animals. Here we describe the development of a stable transfection system for use in Spironucleus salmonicida, a diplomonad that causes systemic spironucleosis in salmonid fish. We designed vectors in cassette format carrying epitope tags for localization (3×HA [where HA is hemagglutinin], 2× Escherichia coli OmpF linker and mouse langerin fusion sequence [2×OLLAS], 3×MYC) and purification of proteins (2× Strep-Tag II-FLAG tandem-affinity purification tag or streptavidin binding peptide-glutathione S-transferase [SBP-GST]) under the control of native or constitutive promoters. Three selectable gene markers, puromycin acetyltransferase (pac), blasticidin S-deaminase (bsr), and neomycin phosphotransferase (nptII), were successfully applied for the generation of stable transfectants. Site-specific integration on the S. salmonicida chromosome was shown to be possible using the bsr resistance gene. We epitope tagged six proteins and confirmed their expression by Western blotting. Next, we demonstrated the utility of these vectors by recording the subcellular localizations of the six proteins by laser scanning confocal microscopy. Finally, we described the creation of an S. salmonicida double transfectant suitable for colocalization studies. The transfection system described herein and the imminent completion of the S. salmonicida genome will make it possible to use comparative genomics as an investigative tool to explore specific, as well as general, diplomonad traits, benefiting research on both Giardia and Spironucleus.


Assuntos
Diplomonadida/metabolismo , Vetores Genéticos/metabolismo , Transfecção/métodos , Aciltransferases/genética , Aciltransferases/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Animais , Western Blotting , Cromossomos/genética , Cromossomos/metabolismo , Clonagem Molecular , Diplomonadida/efeitos dos fármacos , Diplomonadida/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Marcadores Genéticos , Vetores Genéticos/genética , Gentamicinas/farmacologia , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Hemaglutininas/metabolismo , Concentração Inibidora 50 , Canamicina Quinase/genética , Canamicina Quinase/metabolismo , Microscopia Confocal , Nucleosídeos/farmacologia , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Porinas/genética , Porinas/metabolismo , Regiões Promotoras Genéticas , Puromicina/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Eukaryot Cell ; 11(7): 864-73, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22611020

RESUMO

In recent years, proteomics has come of age with the development of efficient tools for purification, identification, and characterization of gene products predicted by genome projects. The intestinal protozoan Giardia intestinalis can be transfected, but there is only a limited set of vectors available, and most of them are not user friendly. This work delineates the construction of a suite of cassette-based expression vectors for use in Giardia. Expression is provided by the strong constitutive ornithine carbamoyltransferase (OCT) promoter, and tagging is possible in both N- and C-terminal configurations. Taken together, the vectors are capable of providing protein localization and production of recombinant proteins, followed by efficient purification by a novel affinity tag combination, streptavidin binding peptide-glutathione S-transferase (SBP-GST). The option of removing the tags from purified proteins was provided by the inclusion of a PreScission protease site. The efficiency and feasibility of producing and purifying endogenous recombinant Giardia proteins with the developed vectors was demonstrated by the purification of active recombinant arginine deiminase (ADI) and OCT from stably transfected trophozoites. Moreover, we describe the tagging, purification by StrepTactin affinity chromatography, and compositional analysis by mass spectrometry of the G. intestinalis 26S proteasome by employing the Strep II-FLAG-tandem affinity purification (SF-TAP) tag. This is the first report of efficient production and purification of recombinant proteins in and from Giardia, which will allow the study of specific parasite proteins and protein complexes.


Assuntos
Giardia/enzimologia , Giardíase/parasitologia , Plasmídeos/genética , Complexo de Endopeptidases do Proteassoma/isolamento & purificação , Proteínas de Protozoários/isolamento & purificação , Fatores de Virulência/isolamento & purificação , Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Giardia/química , Giardia/genética , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Dados de Sequência Molecular , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Plasmídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
15.
Int J Parasitol ; 53(4): 233-245, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36898426

RESUMO

The eukaryotic phylum Parabasalia is composed primarily of anaerobic, endobiotic organisms such as the veterinary parasite Tritrichomonas foetus and the human parasite Trichomonas vaginalis, the latter causing the most prevalent, non-viral, sexually transmitted disease world-wide. Although a parasitic lifestyle is generally associated with a reduction in cell biology, T. vaginalis provides a striking counter-example. The 2007 T. vaginalis genome paper reported a massive and selective expansion of encoded proteins involved in vesicle trafficking, particularly those implicated in the late secretory and endocytic systems. Chief amongst these were the hetero-tetrameric adaptor proteins or 'adaptins', with T. vaginalis encoding ∼3.5 times more such proteins than do humans. The provenance of such a complement, and how it relates to the transition from a free-living or endobiotic state to parasitism, remains unclear. In this study, we performed a comprehensive bioinformatic and molecular evolutionary investigation of the heterotetrameric cargo adaptor-derived coats, comparing the molecular complement and evolution of these proteins between T. vaginalis, T. foetus and the available diversity of endobiotic parabasalids. Notably, with the recent discovery of Anaeramoeba spp. as the free-living sister lineage to all parabasalids, we were able to delve back to time points earlier in the lineage's history than ever before. We found that, although T. vaginalis still encodes the most HTAC subunits amongst parabasalids, the duplications giving rise to the complement took place more deeply and at various stages across the lineage. While some duplications appear to have convergently shaped the parasitic lineages, the largest jump is in the transition from free-living to endobiotic lifestyle with both gains and losses shaping the encoded complement. This work details the evolution of a cellular system across an important lineage of parasites and provides insight into the evolutionary dynamics of an example of expansion of protein machinery, counter to the more common trends observed in many parasitic systems.


Assuntos
Parabasalídeos , Parasitos , Trichomonas vaginalis , Tritrichomonas foetus , Animais , Humanos , Trichomonas vaginalis/genética , Tritrichomonas foetus/genética , Biologia Computacional
16.
Elife ; 122023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920032

RESUMO

Increasing numbers of small proteins with diverse physiological roles are being identified and characterized in both prokaryotic and eukaryotic systems, but the origins and evolution of these proteins remain unclear. Recent genomic sequence analyses in several organisms suggest that new functions encoded by small open reading frames (sORFs) may emerge de novo from noncoding sequences. However, experimental data demonstrating if and how randomly generated sORFs can confer beneficial effects to cells are limited. Here, we show that by upregulating hisB expression, de novo small proteins (≤50 amino acids in length) selected from random sequence libraries can rescue Escherichia coli cells that lack the conditionally essential SerB enzyme. The recovered small proteins are hydrophobic and confer their rescue effect by binding to the 5' end regulatory region of the his operon mRNA, suggesting that protein binding promotes structural rearrangements of the RNA that allow increased hisB expression. This study adds RNA regulatory elements as another interacting partner for de novo proteins isolated from random sequence libraries and provides further experimental evidence that small proteins with selective benefits can originate from the expression of nonfunctional sequences.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas/metabolismo , RNA/metabolismo , Óperon , Fases de Leitura Aberta/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
17.
Parasit Vectors ; 16(1): 52, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732768

RESUMO

BACKGROUND: Blastocystis is one of the most common eukaryotic microorganisms colonizing the intestines of both humans and animals, but the conditions under which it may be a pathogen are unclear. METHODS: To study the genomic characteristics of circulating subtypes (ST) in Colombia, we established nine xenic cultures from Blastocystis isolated from human fecal samples, we identified 10 different subtypes, since one sample had a mixed infection. Thus, the genomes of the subtypes ST1 (n = 3), ST2 (n = 1), ST3 (n = 2), ST6 (n = 1), ST7 (n = 1), and ST8 (n = 2) were sequenced using Illumina and Oxford Nanopore Technologies (ONT). RESULTS: Analyses of these draft nuclear genomes indicated remarkable diversity in terms of genome size and guanine-cytosine (GC) content among the compared STs. Illumina sequencing-only draft genomes contained 824 to 2077 scaffolds, with total genome size ranging from 12 to 13.2 Mb and N50 values ranging from 10,585 to 29,404 base pairs (bp). The genome of one ST1 isolate was sequenced using ONT. This assembly was more contiguous, with a size of 20 million base pairs (Mb) spread over 116 scaffolds, and an N50 of 248,997 bp. CONCLUSION: This work represents one of the few large-scale comparative genomic analyses of Blastocystis isolates, providing an additional glimpse into its genomic diversity.


Assuntos
Infecções por Blastocystis , Blastocystis , Animais , Humanos , Blastocystis/genética , Colômbia , Variação Genética , Filogenia , DNA de Protozoário/genética , Fezes
19.
PLoS Pathog ; 5(8): e1000560, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19696920

RESUMO

Giardia intestinalis is a major cause of diarrheal disease worldwide and two major Giardia genotypes, assemblages A and B, infect humans. The genome of assemblage A parasite WB was recently sequenced, and the structurally compact 11.7 Mbp genome contains simplified basic cellular machineries and metabolism. We here performed 454 sequencing to 16x coverage of the assemblage B isolate GS, the only Giardia isolate successfully used to experimentally infect animals and humans. The two genomes show 77% nucleotide and 78% amino-acid identity in protein coding regions. Comparative analysis identified 28 unique GS and 3 unique WB protein coding genes, and the variable surface protein (VSP) repertoires of the two isolates are completely different. The promoters of several enzymes involved in the synthesis of the cyst-wall lack binding sites for encystation-specific transcription factors in GS. Several synteny-breaks were detected and verified. The tetraploid GS genome shows higher levels of overall allelic sequence polymorphism (0.5 versus <0.01% in WB). The genomic differences between WB and GS may explain some of the observed biological and clinical differences between the two isolates, and it suggests that assemblage A and B Giardia can be two different species.


Assuntos
Genoma de Protozoário , Giardia lamblia/genética , Giardíase/parasitologia , Animais , Sequência de Bases , Frequência do Gene , Genoma Bacteriano/genética , Giardia lamblia/classificação , Humanos , Íntrons , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Porphyromonas gingivalis/genética , Regiões Promotoras Genéticas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , Alinhamento de Sequência , Sintenia
20.
Genes (Basel) ; 12(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34946882

RESUMO

Giardia intestinalis is an intestinal protozoan parasite that causes diarrheal infections worldwide. A key process to sustain its chain of transmission is the formation of infectious cysts in the encystation process. We combined deep RNAseq of a broad range of encystation timepoints to produce a high-resolution gene expression map of Giardia encystation. This detailed transcriptomic map of encystation confirmed a gradual change of gene expression along the time course of encystation, showing the most significant gene expression changes during late encystation. Few genes are differentially expressed early in encystation, but the major cyst wall proteins CWP-1 and -2 are highly up-regulated already after 3.5 h encystation. Several transcription factors are sequentially up-regulated throughout the process, but many up-regulated genes at 7, 10, and 14 h post-induction of encystation have binding sites in the upstream regions for the Myb2 transcription factor, suggesting that Myb2 is a master regulator of encystation. We observed major changes in gene expression of several meiotic-related genes from 10.5 h of encystation to the cyst stage, and at 17.5 h encystation, there are changes in many different metabolic pathways and protein synthesis. Late encystation, 21 h to cysts, show extensive gene expression changes, most of all in VSP and HCMP genes, which are involved in antigenic variation, and genes involved in chromatin modifications. This high-resolution gene expression map of Giardia encystation will be an important tool in further studies of this important differentiation process.


Assuntos
Giardia lamblia/genética , Encistamento de Parasitas/genética , Expressão Gênica , Giardia lamblia/fisiologia , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa