RESUMO
High resolution and noninvasiveness have made soft-tissue X-ray microtomography (µCT) a widely applicable three-dimensional (3D) imaging method in studies of morphology and development. However, scarcity of molecular probes to visualize gene activity with µCT has remained a challenge. Here, we apply horseradish peroxidase-assisted reduction of silver and catalytic gold enhancement of the silver deposit to in situ hybridization in order to detect gene expression in developing tissues with µCT (here called GECT, gene expression CT). We show that GECT detects expression patterns of collagen type II alpha 1 and sonic hedgehog in developing mouse tissues comparably with an alkaline phosphatase-based detection method. After detection, expression patterns are visualized with laboratory µCT, demonstrating that GECT is compatible with varying levels of gene expression and varying sizes of expression regions. Additionally, we show that the method is compatible with prior phosphotungstic acid staining, a conventional contrast staining approach in µCT imaging of soft tissues. Overall, GECT is a method that can be integrated with existing laboratory routines to obtain spatially accurate 3D detection of gene expression.
Assuntos
Proteínas Hedgehog , Prata , Camundongos , Animais , Microtomografia por Raio-X/métodos , Hibridização In Situ , Expressão Gênica , Imageamento Tridimensional/métodosRESUMO
When evolution leads to differences in body size, organs generally scale along. A well-known example of the tight relationship between organ and body size is the scaling of mammalian molar teeth. To investigate how teeth scale during development and evolution, we compared molar development from initiation through final size in the mouse and the rat. Whereas the linear dimensions of the rat molars are twice that of the mouse molars, their shapes are largely the same. Here, we focus on the first lower molars that are considered the most reliable dental proxy for size-related patterns due to their low within-species variability. We found that scaling of the molars starts early, and that the rat molar is patterned equally as fast but in a larger size than the mouse molar. Using transcriptomics, we discovered that a known regulator of body size, insulin-like growth factor 1 (Igf1), is more highly expressed in the rat molars compared to the mouse molars. Ex vivo and in vivo mouse models demonstrated that modulation of the IGF pathway reproduces several aspects of the observed scaling process. Furthermore, analysis of IGF1-treated mouse molars and computational modeling indicate that IGF signaling scales teeth by simultaneously enhancing growth and by inhibiting the cusp-patterning program, thereby providing a relatively simple mechanism for scaling teeth during development and evolution. Finally, comparative data from shrews to elephants suggest that this scaling mechanism regulates the minimum tooth size possible, as well as the patterning potential of large teeth.
Assuntos
Mamífero Proboscídeo , Ratos , Camundongos , Animais , Dente Molar , Musaranhos , Tamanho Corporal , CogniçãoRESUMO
BACKGROUND: Continuously growing teeth are an important innovation in mammalian evolution, yet genetic regulation of continuous growth by stem cells remains incompletely understood. Dental stem cells responsible for tooth crown growth are lost at the onset of tooth root formation. Genetic signaling that initiates this loss is difficult to study with the ever-growing incisor and rooted molars of mice, the most common mammalian dental model species, because signals for root formation overlap with signals that pattern tooth size and shape (i.e., cusp patterns). Bank and prairie voles (Cricetidae, Rodentia, Glires) have evolved rooted and unrooted molars while retaining similar size and shape, providing alternative models for studying roots. RESULTS: We assembled a de novo genome of Myodes glareolus, a vole with high-crowned, rooted molars, and performed genomic and transcriptomic analyses in a broad phylogenetic context of Glires (rodents and lagomorphs) to assess differential selection and evolution in tooth forming genes. Bulk transcriptomics comparisons of embryonic molar development between bank voles and mice demonstrated overall conservation of gene expression levels, with species-specific differences corresponding to the accelerated and more extensive patterning of the vole molar. We leverage convergent evolution of unrooted molars across the clade to examine changes that may underlie the evolution of unrooted molars. We identified 15 dental genes with changing synteny relationships and six dental genes undergoing positive selection across Glires, two of which were undergoing positive selection in species with unrooted molars, Dspp and Aqp1. Decreased expression of both genes in prairie voles with unrooted molars compared to bank voles supports the presence of positive selection and may underlie differences in root formation. CONCLUSIONS: Our results support ongoing evolution of dental genes across Glires and identify candidate genes for mechanistic studies of root formation. Comparative research using the bank vole as a model species can reveal the complex evolutionary background of convergent evolution for ever-growing molars.
Assuntos
Arvicolinae , Genômica , Animais , Arvicolinae/genética , Camundongos , Dente/crescimento & desenvolvimento , Dente/metabolismo , Filogenia , Dente Molar/crescimento & desenvolvimento , Dente Molar/metabolismo , Evolução Molecular , Evolução Biológica , Odontogênese/genética , GenomaRESUMO
The development of an individual must be capable of resisting the harmful effects of internal and external perturbations. This capacity, called robustness, can make the difference between normal variation and disease. Some systems and organs are more resilient in their capacity to correct the effects of internal disturbances such as mutations. Similarly, organs and organisms differ in their capacity to be resilient against external disturbances, such as changes in temperature. Furthermore, all developmental systems must be somewhat flexible to permit evolutionary change, and understanding robustness requires a comparative framework. Over the last decades, most research on developmental robustness has been focusing on specific model systems and organs. Hence, we lack tools that would allow cross-species and cross-organ comparisons. Here, we emphasize the need for a uniform framework to experimentally test and quantify robustness across study systems and suggest that the analysis of fluctuating asymmetry might be a powerful proxy to do so. Such a comparative framework will ultimately help to resolve why and how organs of the same and different species differ in their sensitivity to internal (e.g., mutations) and external (e.g., temperature) perturbations and at what level of biological organization buffering capacities exist and therefore create robustness of the developmental system.
Assuntos
Evolução Biológica , Modelos Biológicos , Animais , TemperaturaRESUMO
The Earth's polar regions are low rates of inter- and intraspecific diversification. An extreme mammalian example is the Arctic ringed seal (Pusa hispida hispida), which is assumed to be panmictic across its circumpolar Arctic range. Yet, local Inuit communities in Greenland and Canada recognize several regional variants; a finding supported by scientific studies of body size variation. It is however unclear whether this phenotypic variation reflects plasticity, morphs or distinct ecotypes. Here, we combine genomic, biologging and survey data, to document the existence of a unique ringed seal ecotype in the Ilulissat Icefjord (locally 'Kangia'), Greenland; a UNESCO World Heritage site, which is home to the most productive marine-terminating glacier in the Arctic. Genomic analyses reveal a divergence of Kangia ringed seals from other Arctic ringed seals about 240 kya, followed by secondary contact since the Last Glacial Maximum. Despite ongoing gene flow, multiple genomic regions appear under strong selection in Kangia ringed seals, including candidate genes associated with pelage coloration, growth and osmoregulation, potentially explaining the Kangia seal's phenotypic and behavioural uniqueness. The description of 'hidden' diversity and adaptations in yet another Arctic species merits a reassessment of the evolutionary processes that have shaped Arctic diversity and the traditional view of this region as an evolutionary freezer. Our study highlights the value of indigenous knowledge in guiding science and calls for efforts to identify distinct populations or ecotypes to understand how these might respond differently to environmental change.
Assuntos
Focas Verdadeiras , Animais , Focas Verdadeiras/genética , Canadá , Mamíferos , Regiões Árticas , GroenlândiaRESUMO
Although most genes share their chromosomal neighbourhood with other genes, distribution of genes has not been explored in the context of individual organ development; the common focus of developmental biology studies. Because developmental processes are often associated with initially subtle changes in gene expression, here we explored whether neighbouring genes are informative in the identification of differentially expressed genes. First, we quantified the chromosomal neighbourhood patterns of genes having related functional roles in the mammalian genome. Although the majority of protein coding genes have at least five neighbours within 1 Mb window around each gene, very few of these neighbours regulate development of the same organ. Analyses of transcriptomes of developing mouse molar teeth revealed that whereas expression of genes regulating tooth development changes, their neighbouring genes show no marked changes, irrespective of their level of expression. Finally, we test whether inclusion of gene neighbourhood in the analyses of differential expression could provide additional benefits. For the analyses, we developed an algorithm, called DELocal that identifies differentially expressed genes by comparing their expression changes to changes in adjacent genes in their chromosomal regions. Our results show that DELocal removes detection bias towards large changes in expression, thereby allowing identification of even subtle changes in development. Future studies, including the detection of differential expression, may benefit from, and further characterize the significance of gene-gene neighbour relationships.
Assuntos
Cromossomos , Perfilação da Expressão Gênica/métodos , Especificidade de Órgãos , Animais , Ontologia Genética , Camundongos , Proteínas/genéticaRESUMO
The variation in molar tooth size in humans and our closest relatives (hominins) has strongly influenced our view of human evolution. The reduction in overall size and disproportionate decrease in third molar size have been noted for over a century, and have been attributed to reduced selection for large dentitions owing to changes in diet or the acquisition of cooking. The systematic pattern of size variation along the tooth row has been described as a 'morphogenetic gradient' in mammal, and more specifically hominin, teeth since Butler and Dahlberg. However, the underlying controls of tooth size have not been well understood, with hypotheses ranging from morphogenetic fields to the clone theory. In this study we address the following question: are there rules that govern how hominin tooth size evolves? Here we propose that the inhibitory cascade, an activator-inhibitor mechanism that affects relative tooth size in mammals, produces the default pattern of tooth sizes for all lower primary postcanine teeth (deciduous premolars and permanent molars) in hominins. This configuration is also equivalent to a morphogenetic gradient, finally pointing to a mechanism that can generate this gradient. The pattern of tooth size remains constant with absolute size in australopiths (including Ardipithecus, Australopithecus and Paranthropus). However, in species of Homo, including modern humans, there is a tight link between tooth proportions and absolute size such that a single developmental parameter can explain both the relative and absolute sizes of primary postcanine teeth. On the basis of the relationship of inhibitory cascade patterning with size, we can use the size at one tooth position to predict the sizes of the remaining four primary postcanine teeth in the row for hominins. Our study provides a development-based expectation to examine the evolution of the unique proportions of human teeth.
Assuntos
Evolução Biológica , Hominidae/anatomia & histologia , Dente/anatomia & histologia , Animais , Feminino , Fósseis , Hominidae/classificação , Humanos , Masculino , Dente Molar/anatomia & histologia , Tamanho do Órgão , Filogenia , Especificidade da EspécieRESUMO
When a null mutation of a gene causes a complete developmental arrest, the gene is typically considered essential for life. Yet, in most cases, null mutations have more subtle effects on the phenotype. Here we used the phenotypic severity of mutations as a tool to examine system-level dynamics of gene expression. We classify genes required for the normal development of the mouse molar into different categories that range from essential to subtle modification of the phenotype. Collectively, we call these the developmental keystone genes. Transcriptome profiling using microarray and RNAseq analyses of patterning stage mouse molars show highly elevated expression levels for genes essential for the progression of tooth development, a result reminiscent of essential genes in single-cell organisms. Elevated expression levels of progression genes were also detected in developing rat molars, suggesting evolutionary conservation of this system-level dynamics. Single-cell RNAseq analyses of developing mouse molars reveal that even though the size of the expression domain, measured in the number of cells, is the main driver of organ-level expression, progression genes show high cell-level transcript abundances. Progression genes are also upregulated within their pathways, which themselves are highly expressed. In contrast, a high proportion of the genes required for normal tooth patterning are secreted ligands that are expressed in fewer cells than their receptors and intracellular components. Overall, even though expression patterns of individual genes can be highly different, conserved system-level principles of gene expression can be detected using phenotypically defined gene categories.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Odontogênese/genética , Odontogênese/fisiologia , Dente/crescimento & desenvolvimento , Animais , Evolução Biológica , Perfilação da Expressão Gênica , Análise de Célula Única , Regulação para CimaRESUMO
A major challenge in evolutionary developmental biology is to understand how genetic mutations underlie phenotypic changes. In principle, selective pressures on the phenotype screen the gene pool of the population. Teeth are an excellent model for understanding evolutionary changes in the genotype-phenotype relationship since they exist throughout vertebrates. Genetically modified mice (mutants) with abnormalities in teeth have been used to explore tooth development. The relationship between signaling pathways and molar shape, however, remains elusive due to the high intrinsic complexity of tooth crowns. This hampers our understanding of the extent to which developmental factors explored in mutants explain developmental and phenotypic variation in natural species that represent the consequence of natural selection. Here we combine a novel morphometric method with two kinds of data mining techniques to extract data sets from the three-dimensional surface models of lower first molars: i) machine learning to maximize classification accuracy of 22 mutants, and ii) phylogenetic signal for 31 Murinae species. Major shape variation among mutants is explained by the number of cusps and cusp distribution on a tooth crown. The distribution of mutant mice in morphospace suggests a nonlinear relationship between the signaling pathways and molar shape variation. Comparative analysis of mutants and wild murines reveals that mutant variation overlaps naturally occurring diversity, including more ancestral and derived morphologies. However, taxa with transverse lophs are not fully covered by mutant variation, suggesting experimentally unexplored developmental factors in the evolutionary radiation of Murines.
Assuntos
Modelos Anatômicos , Dente Molar/anatomia & histologia , Transdução de Sinais , Animais , Evolução Biológica , Aprendizado de Máquina , Camundongos , Camundongos Mutantes , FilogeniaRESUMO
The patterning of repeated structures is a major theme in developmental biology, and the inter-relationship between spacing and size of such structures is an unresolved issue. Fungiform papillae are repeated epithelial structures that house taste buds on the anterior tongue. Here, we report that FGF signaling is a crucial regulator of fungiform papillae development. We found that mesenchymal FGF10 controls the size of the papillary area, while overall patterning remains unchanged. Our results show that FGF signaling negatively affects the extent of canonical Wnt signaling, which is the main activation pathway during fungiform papillae development; however, this effect does not occur at the level of gene transcription. Rather, our experimental data, together with computational modeling, indicate that FGF10 modulates the range of Wnt effects, likely via induction of Sostdc1 expression. We suggest that modification of the reach of Wnt signaling could be due to local changes in morphogen diffusion, representing a novel mechanism in this tissue context, and we propose that this phenomenon might be involved in a broader array of mammalian developmental processes.
Assuntos
Fator 10 de Crescimento de Fibroblastos/metabolismo , Papilas Gustativas/embriologia , Papilas Gustativas/metabolismo , Via de Sinalização Wnt , Proteínas Adaptadoras de Transdução de Sinal , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Simulação por Computador , Feminino , Fator 10 de Crescimento de Fibroblastos/deficiência , Fator 10 de Crescimento de Fibroblastos/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Gravidez , Proteínas Serina-Treonina QuinasesRESUMO
The most mineralized tissue of the mammalian body is tooth enamel. Especially in species with thick enamel, three-dimensional (3D) tomography data has shown that the distribution of enamel varies across the occlusal surface of the tooth crown. Differences in enamel thickness among species and within the tooth crown have been used to examine taxonomic affiliations, life history, and functional properties of teeth. Before becoming fully mineralized, enamel matrix is secreted on the top of a dentine template, and it remains to be explored how matrix thickness is spatially regulated. To provide a predictive framework to examine enamel distribution, we introduce a computational model of enamel matrix secretion that maps the dentine topography to the enamel surface topography. Starting from empirical enamel-dentine junctions, enamel matrix deposition is modeled as a diffusion-limited free boundary problem. Using laboratory microCT and synchrotron tomographic data of pig molars that have markedly different dentine and enamel surface topographies, we show how diffusion-limited matrix deposition accounts for both the process of matrix secretion and the final enamel distribution. Simulations reveal how concave and convex dentine features have distinct effects on enamel surface, thereby explaining why the enamel surface is not a straightforward extrapolation of the dentine template. Human and orangutan molar simulations show that even subtle variation in dentine topography can be mapped to the enamel surface features. Mechanistic models of extracellular matrix deposition can be used to predict occlusal morphologies of teeth.
Assuntos
Esmalte Dentário/metabolismo , Modelos Dentários , Algoritmos , Animais , Biologia Computacional , Simulação por Computador , Esmalte Dentário/anatomia & histologia , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Mamíferos , Dente Molar/anatomia & histologia , Dente Molar/metabolismo , Suínos , Dente/anatomia & histologia , Dente/metabolismo , Microtomografia por Raio-XRESUMO
The evolutionary relationships of extinct species are ascertained primarily through the analysis of morphological characters. Character inter-dependencies can have a substantial effect on evolutionary interpretations, but the developmental underpinnings of character inter-dependence remain obscure because experiments frequently do not provide detailed resolution of morphological characters. Here we show experimentally and computationally how gradual modification of development differentially affects characters in the mouse dentition. We found that intermediate phenotypes could be produced by gradually adding ectodysplasin A (EDA) protein in culture to tooth explants carrying a null mutation in the tooth-patterning gene Eda. By identifying development-based character inter-dependencies, we show how to predict morphological patterns of teeth among mammalian species. Finally, in vivo inhibition of sonic hedgehog signalling in Eda null teeth enabled us to reproduce characters deep in the rodent ancestry. Taken together, evolutionarily informative transitions can be experimentally reproduced, thereby providing development-based expectations for character-state transitions used in evolutionary studies.
Assuntos
Evolução Biológica , Fósseis , Dente/anatomia & histologia , Dente/crescimento & desenvolvimento , Animais , Simulação por Computador , Ectodisplasinas/deficiência , Ectodisplasinas/genética , Ectodisplasinas/farmacologia , Feminino , Deleção de Genes , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Técnicas In Vitro , Masculino , Camundongos , Dente Molar/anatomia & histologia , Dente Molar/efeitos dos fármacos , Dente Molar/crescimento & desenvolvimento , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Dente/efeitos dos fármacosRESUMO
Much of the basic information about individual organ development comes from studies using model species. Whereas conservation of gene regulatory networks across higher taxa supports generalizations made from a limited number of species, generality of mechanistic inferences remains to be tested in tissue culture systems. Here, using mammalian tooth explants cultured in isolation, we investigate self-regulation of patterning by comparing developing molars of the mouse, the model species of mammalian research, and the bank vole. A distinct patterning difference between the vole and the mouse molars is the alternate cusp offset present in the vole. Analyses of both species using 3D reconstructions of developing molars and jaws, computational modeling of cusp patterning, and tooth explants cultured with small braces show that correct cusp offset requires constraints on the lateral expansion of the developing tooth. Vole molars cultured without the braces lose their cusp offset, and mouse molars cultured with the braces develop a cusp offset. Our results suggest that cusp offset, which changes frequently in mammalian evolution, is more dependent on the 3D support of the developing jaw than other aspects of tooth shape. This jaw-tooth integration of a specific aspect of the tooth phenotype indicates that organs may outsource specific aspects of their morphology to be regulated by adjacent body parts or organs. Comparative studies of morphologically different species are needed to infer the principles of organogenesis.
Assuntos
Evolução Biológica , Arcada Osseodentária , Desenvolvimento Maxilofacial/fisiologia , Dente/anatomia & histologia , Animais , Arvicolinae/embriologia , Fenômenos Biomecânicos , Simulação por Computador , Embrião de Mamíferos , Desenvolvimento Embrionário , Camundongos , Modelos BiológicosRESUMO
From gastrulation to late organogenesis animal development involves many genetic and bio-mechanical interactions between epithelial and mesenchymal tissues. Ectodermal organs, such as hairs, feathers and teeth are well studied examples of organs whose development is based on epithelial-mesenchymal interactions. These develop from a similar primordium through an epithelial folding and its interaction with the mesenchyme. Despite extensive knowledge on the molecular pathways involved, little is known about the role of bio-mechanical processes in the morphogenesis of these organs. We propose a simple computational model for the biomechanics of one such organ, the tooth, and contrast its predictions against cell-tracking experiments, mechanical relaxation experiments and the observed tooth shape changes over developmental time. We found that two biomechanical processes, differential tissue growth and differential cell adhesion, were enough, in the model, for the development of the 3D morphology of the early tooth germ. This was largely determined by the length and direction of growth of the cervical loops, lateral folds of the enamel epithelium. The formation of these cervical loops was found to require accelerated epithelial growth relative to other tissues and their direction of growth depended on specific differential adhesion between the three tooth tissues. These two processes and geometrical constraints in early tooth bud also explained the shape asymmetry between the lateral cervical loops and those forming in the anterior and posterior of the tooth. By performing mechanical perturbations ex vivo and in silico we inferred the distribution and direction of tensile stresses in the mesenchyme that restricted cervical loop lateral growth and forced them to grow downwards. Overall our study suggests detailed quantitative explanations for how bio-mechanical processes lead to specific morphological 3D changes over developmental time.
Assuntos
Adesão Celular , Odontogênese , Dente/embriologia , Animais , Movimento Celular , Proliferação de Células , Simulação por Computador , Dentina/embriologia , Ectoderma/embriologia , Células Epiteliais/citologia , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Técnicas In Vitro , Mesoderma/embriologia , Camundongos , Modelos Biológicos , Transdução de Sinais , Estresse MecânicoRESUMO
One of the fascinating aspects of the history of life is the apparent increase in morphological complexity through time, a well known example being mammalian cheek tooth evolution. In contrast, experimental studies of development more readily show a decrease in complexity, again well exemplified by mammalian teeth, in which tooth crown features called cusps are frequently lost in mutant and transgenic mice. Here we report that mouse tooth complexity can be increased substantially by adjusting multiple signalling pathways simultaneously. We cultured teeth in vitro and adjusted ectodysplasin (EDA), activin A and sonic hedgehog (SHH) pathways, all of which are individually required for normal tooth development. We quantified tooth complexity using the number of cusps and a topographic measure of surface complexity. The results show that whereas activation of EDA and activin A signalling, and inhibition of SHH signalling, individually cause subtle to moderate increases in complexity, cusp number is doubled when all three pathways are adjusted in unison. Furthermore, the increase in cusp number does not result from an increase in tooth size, but from an altered primary patterning phase of development. The combination of a lack of complex mutants, the paucity of natural variants with complex phenotypes, and our results of greatly increased dental complexity using multiple pathways, suggests that an increase may be inherently different from a decrease in phenotypic complexity.
Assuntos
Evolução Biológica , Dente Molar/anatomia & histologia , Dente Molar/metabolismo , Transdução de Sinais , Ativinas/metabolismo , Ativinas/farmacologia , Animais , Biologia do Desenvolvimento , Ectodisplasinas/metabolismo , Ectodisplasinas/farmacologia , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Camundongos , Dente Molar/efeitos dos fármacos , Dente Molar/embriologia , Mutação , Técnicas de Cultura de Órgãos , Fenótipo , Transdução de Sinais/efeitos dos fármacosRESUMO
The Cretaceous-Paleogene mass extinction approximately 66 million years ago is conventionally thought to have been a turning point in mammalian evolution. Prior to that event and for the first two-thirds of their evolutionary history, mammals were mostly confined to roles as generalized, small-bodied, nocturnal insectivores, presumably under selection pressures from dinosaurs. Release from these pressures, by extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, triggered ecological diversification of mammals. Although recent individual fossil discoveries have shown that some mammalian lineages diversified ecologically during the Mesozoic era, comprehensive ecological analyses of mammalian groups crossing the Cretaceous-Paleogene boundary are lacking. Such analyses are needed because diversification analyses of living taxa allow only indirect inferences of past ecosystems. Here we show that in arguably the most evolutionarily successful clade of Mesozoic mammals, the Multituberculata, an adaptive radiation began at least 20 million years before the extinction of non-avian dinosaurs and continued across the Cretaceous-Paleogene boundary. Disparity in dental complexity, which relates to the range of diets, rose sharply in step with generic richness and disparity in body size. Moreover, maximum dental complexity and body size demonstrate an adaptive shift towards increased herbivory. This dietary expansion tracked the ecological rise of angiosperms and suggests that the resources that were available to multituberculates were relatively unaffected by the Cretaceous-Paleogene mass extinction. Taken together, our results indicate that mammals were able to take advantage of new ecological opportunities in the Mesozoic and that at least some of these opportunities persisted through the Cretaceous-Paleogene mass extinction. Similar broad-scale ecomorphological inventories of other radiations may help to constrain the possible causes of mass extinctions.
Assuntos
Evolução Biológica , Dinossauros/fisiologia , Extinção Biológica , Mamíferos/fisiologia , Animais , Tamanho Corporal , Dieta/história , Dieta/veterinária , Fósseis , Herbivoria/fisiologia , História Antiga , Magnoliopsida/classificação , Magnoliopsida/fisiologia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Filogenia , Fatores de Tempo , Dente/anatomia & histologiaRESUMO
The origin of the turtle shell over 200 million years ago greatly modified the amniote body plan, and the morphological plasticity of the shell has promoted the adaptive radiation of turtles. The shell, comprising a dorsal carapace and a ventral plastron, is a layered structure formed by basal endochondral axial skeletal elements (ribs, vertebrae) and plates of bone, which are overlain by keratinous ectodermal scutes. Studies of turtle development have mostly focused on the bones of the shell; however, the genetic regulation of the epidermal scutes has not been investigated. Here, we show that scutes develop from an array of patterned placodes and that these placodes are absent from a soft-shelled turtle in which scutes were lost secondarily. Experimentally inhibiting Shh, Bmp or Fgf signaling results in the disruption of the placodal pattern. Finally, a computational model is used to show how two coupled reaction-diffusion systems reproduce both natural and abnormal variation in turtle scutes. Taken together, these placodal signaling centers are likely to represent developmental modules that are responsible for the evolution of scutes in turtles, and the regulation of these centers has allowed for the diversification of the turtle shell.
Assuntos
Exoesqueleto/embriologia , Padronização Corporal , Tartarugas/embriologia , Exoesqueleto/fisiologia , Animais , Evolução Biológica , Desenvolvimento Ósseo , Proteínas Morfogenéticas Ósseas/metabolismo , Simulação por Computador , Embrião não Mamífero/anatomia & histologia , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Imageamento Tridimensional , Hibridização In Situ , Transdução de Sinais , Tartarugas/fisiologiaRESUMO
UNLABELLED: Longitudinal sampling for intestinal microbiota in wild animals is difficult, leading to a lack of information on bacterial dynamics occurring in nature. We studied how the composition of microbiota communities changed temporally in free-ranging small primates, rufous mouse lemurs (Microcebus rufus). We marked and recaptured mouse lemurs during their mating season in Ranomafana National Park in southeastern mountainous rainforests of Madagascar for 2 years and determined the fecal microbiota compositions of these mouse lemurs with MiSeq sequencing. We collected 160 fecal samples from 71 animals and had two or more samples from 39 individuals. We found small, but statistically significant, effects of site and age on microbiota richness and diversity and effects of sex, year, and site on microbiota composition, while the within-year temporal trends were less clear. Within-host microbiota showed pervasive variation in intestinal bacterial community composition, especially during the second study year. We hypothesize that the biological properties of mouse lemurs, including their small body size and fast metabolism, may contribute to the temporal intraindividual-level variation, something that should be testable with more-extensive sampling regimes. IMPORTANCE: While microbiome research has blossomed in recent years, there is a lack of longitudinal studies on microbiome dynamics on free-ranging hosts. To fill this gap, we followed mouse lemurs, which are small heterothermic primates, for 2 years. Most studied animals have shown microbiota to be stable over the life span of host individuals, but some previous research also found ample within-host variation in microbiota composition. Our study used a larger sample size than previous studies and a study setting well suited to track within-host variation in free-ranging mammals. Despite the overall microbiota stability at the population level, the microbiota of individual mouse lemurs can show large-scale changes in composition in time periods as short as 2 days, suggesting caution in inferring individual-level patterns from population-level data.
Assuntos
Cheirogaleidae/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal , Animais , Estudos Longitudinais , MadagáscarRESUMO
The relationship between the genotype and the phenotype, or the genotype-phenotype map, is generally approached with the tools of multivariate quantitative genetics and morphometrics. Whereas studies of development and mathematical models of development may offer new insights into the genotype-phenotype map, the challenge is to make them useful at the level of microevolution. Here we report a computational model of mammalian tooth development that combines parameters of genetic and cellular interactions to produce a three-dimensional tooth from a simple tooth primordia. We systematically tinkered with each of the model parameters to generate phenotypic variation and used geometric morphometric analyses to identify, or developmentally ordinate, parameters best explaining population-level variation of real teeth. To model the full range of developmentally possible morphologies, we used a population sample of ringed seals (Phoca hispida ladogensis). Seal dentitions show a high degree of variation, typically linked to the lack of exact occlusion. Our model suggests that despite the complexity of development and teeth, there may be a simple basis for dental variation. Changes in single parameters regulating signalling during cusp development may explain shape variation among individuals, whereas a parameter regulating epithelial growth may explain serial, tooth-to-tooth variation along the jaw. Our study provides a step towards integrating the genotype, development and the phenotype.
Assuntos
Modelos Biológicos , Phoca , Dente/anatomia & histologia , Dente/fisiologia , Animais , Redes Reguladoras de Genes/genética , Genótipo , Fenótipo , Phoca/anatomia & histologia , Phoca/genética , Phoca/crescimento & desenvolvimento , Transdução de Sinais , Dente/crescimento & desenvolvimentoRESUMO
Teeth are found in almost all vertebrates, and they therefore provide a general paradigm for the study of epithelial organ development and evolution. Here, we review the developmental mechanisms underlying changes in tooth complexity and tooth renewal during evolution, focusing on recent studies of fish, reptiles and mammals. Mammals differ from other living vertebrates in that they have the most complex teeth with restricted capacity for tooth renewal. As we discuss, however, limited tooth replacement in mammals has been compensated for in some taxa by the evolution of continuously growing teeth, the development of which appears to reuse the regulatory pathways of tooth replacement.