Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 38(8): 955-66, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20838849

RESUMO

Sugarcane bagasse is used as a fuel in conventional bioethanol production, providing heat and power for the plant; therefore, the amount of surplus bagasse available for use as raw material for second generation bioethanol production is related to the energy consumption of the bioethanol production process. Pentoses and lignin, byproducts of the second generation bioethanol production process, may be used as fuels, increasing the amount of surplus bagasse. In this work, simulations of the integrated bioethanol production process from sugarcane, surplus bagasse and trash were carried out. Selected pre-treatment methods followed, or not, by a delignification step were evaluated. The amount of lignocellulosic materials available for hydrolysis in each configuration was calculated assuming that 50% of sugarcane trash is recovered from the field. An economic risk analysis was carried out; the best results for the integrated first and second generation ethanol production process were obtained for steam explosion pretreatment, high solids loading for hydrolysis and 24-48 h hydrolysis. The second generation ethanol production process must be improved (e.g., decreasing required investment, improving yields and developing pentose fermentation to ethanol) in order for the integrated process to be more economically competitive.


Assuntos
Etanol/metabolismo , Saccharum/metabolismo , Biomassa , Biotecnologia/métodos , Celulose/metabolismo , Fontes Geradoras de Energia , Fermentação , Hidrólise , Lignina/metabolismo , Modelos Biológicos , Centrais Elétricas , Resíduos
2.
Int J Biol Macromol ; 43(1): 54-61, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18187189

RESUMO

Trypsin was immobilized on chitosan gels coagulated with 0.1 or 1 M NaOH and activated with glutaraldehyde or glycidol. The derivatives were characterized by their recovered activity, thermal (40, 55 and 70 degrees C) and alkaline (pH 11) stabilities, amount of enzyme immobilized on gels for several enzyme loads (8-14 mg(protein)/g(Gel)) and compared to agarose derivatives. Enzyme loads higher than 14 mg(protein)/g(Gel) can be immobilized on glutaraldehyde derivatives, which showed 100% immobilization yield and, for loads up to 8 mg(protein)/g(Gel), 100% recovered activity. Activation with glycidol led to lower immobilization yields than the ones obtained with glutaraldehyde, 61% for agarose-glyoxyl (AgGly) with low grade of activation and 16% for the chitosan-glyoxyl (ChGly), but allowed obtaining the most stable derivative (ChGly), that was 660-fold more stable than the soluble enzyme at 55 and 70 degrees C-approximately threefold more stable than AgGly. The ChGly derivative presented also the highest stability during incubation at pH 11. Analyses of lysine residue contents in soluble and immobilized trypsin indicated formation of multipoint bonds between enzyme and support, for glyoxyl derivatives.


Assuntos
Quitosana/química , Enzimas Imobilizadas/química , Tripsina/química , Tripsina/metabolismo , Ácidos/química , Álcalis/química , Animais , Bovinos , Ativação Enzimática , Estabilidade Enzimática , Géis , Concentração de Íons de Hidrogênio , Hidrólise , Pâncreas/enzimologia , Solubilidade , Temperatura
3.
Biotechnol Biofuels ; 10: 50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293288

RESUMO

BACKGROUND: Ethanol production from lignocellulosic feedstocks (also known as 2nd generation or 2G ethanol process) presents a great potential for reducing both ethanol production costs and climate change impacts since agricultural residues and dedicated energy crops are used as feedstock. This study aimed at the quantification of the economic and environmental impacts considering the current and future scenarios of sugarcane biorefineries taking into account not only the improvements of the industrial process but also of biomass production systems. Technology assumptions and scenarios setup were supported by main companies and stakeholders, involved in the lignocellulosic ethanol production chain from Brazil and abroad. For instance, scenarios considered higher efficiencies and lower residence times for pretreatment, enzymatic hydrolysis, and fermentation (including pentoses fermentation); higher sugarcane yields; and introduction of energy cane (a high fiber variety of cane). RESULTS: Ethanol production costs were estimated for different time horizons. In the short term, 2G ethanol presents higher costs compared to 1st generation (1G) ethanol. However, in the long term, 2G ethanol is more competitive, presenting remarkable lower production cost than 1G ethanol, even considering some uncertainties regarding technology and market aspects. In addition, environmental assessment showed that both 1G (in the medium and long term) and 2G ethanol can reduce climate change impacts by more than 80% when compared to gasoline. CONCLUSIONS: This work showed the great potential of 2G ethanol production in terms of economic and environmental aspects. These results can support new research programs and public policies designed to stimulate both production and consumption of 2G ethanol in Brazil, accelerating the path along the learning curve. Some examples of mechanisms include: incentives to the establishment of local equipment and enzyme suppliers; and specific funding programs for the development and use of energy cane.

4.
Bioresour Technol ; 103(1): 152-61, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22019267

RESUMO

Ethanol production from lignocellulosic materials is often conceived considering independent, stand-alone production plants; in the Brazilian scenario, where part of the potential feedstock (sugarcane bagasse) for second generation ethanol production is already available at conventional first generation production plants, an integrated first and second generation production process seems to be the most obvious option. In this study stand-alone second generation ethanol production from surplus sugarcane bagasse and trash is compared with conventional first generation ethanol production from sugarcane and with integrated first and second generation; simulations were developed to represent the different technological scenarios, which provided data for economic and environmental analysis. Results show that the integrated first and second generation ethanol production process from sugarcane leads to better economic results when compared with the stand-alone plant, especially when advanced hydrolysis technologies and pentoses fermentation are included.


Assuntos
Biocombustíveis/análise , Biotecnologia/métodos , Celulose/química , Etanol/metabolismo , Resíduos de Alimentos , Saccharum/química , Biocombustíveis/economia , Biotecnologia/economia , Celulose/economia , Simulação por Computador , Destilação , Eletricidade , Etanol/economia , Eutrofização , Aquecimento Global
5.
Bioresour Technol ; 102(19): 8964-71, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21795041

RESUMO

Much of the controversy surrounding second generation ethanol production arises from the assumed competition with first generation ethanol production; however, in Brazil, where bioethanol is produced from sugarcane, sugarcane bagasse and trash will be used as feedstock for second generation ethanol production. Thus, second generation ethanol production may be primarily in competition with electricity production from the lignocellulosic fraction of sugarcane. A preliminary technical and economic analysis of the integrated production of first and second generation ethanol from sugarcane in Brazil is presented and different technological scenarios are evaluated. The analysis showed the importance of the integrated use of sugarcane including the biomass represented by surplus bagasse and trash that can be taken from the field. Second generation ethanol may favorably compete with bioelectricity production when sugarcane trash is used and when low cost enzyme and improved technologies become commercially available.


Assuntos
Fontes de Energia Bioelétrica/economia , Biocombustíveis/economia , Celulose/química , Etanol/química , Eliminação de Resíduos/métodos , Brasil , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa