Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biostatistics ; 24(2): 481-501, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-34654923

RESUMO

In recent years, a number of methods have been proposed to estimate the times at which a neuron spikes on the basis of calcium imaging data. However, quantifying the uncertainty associated with these estimated spikes remains an open problem. We consider a simple and well-studied model for calcium imaging data, which states that calcium decays exponentially in the absence of a spike, and instantaneously increases when a spike occurs. We wish to test the null hypothesis that the neuron did not spike-i.e., that there was no increase in calcium-at a particular timepoint at which a spike was estimated. In this setting, classical hypothesis tests lead to inflated Type I error, because the spike was estimated on the same data used for testing. To overcome this problem, we propose a selective inference approach. We describe an efficient algorithm to compute finite-sample $p$-values that control selective Type I error, and confidence intervals with correct selective coverage, for spikes estimated using a recent proposal from the literature. We apply our proposal in simulation and on calcium imaging data from the $\texttt{spikefinder}$ challenge.


Assuntos
Cálcio , Diagnóstico por Imagem , Humanos , Incerteza , Potenciais de Ação/fisiologia , Simulação por Computador , Algoritmos
2.
Biostatistics ; 21(4): 709-726, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753436

RESUMO

Calcium imaging data promises to transform the field of neuroscience by making it possible to record from large populations of neurons simultaneously. However, determining the exact moment in time at which a neuron spikes, from a calcium imaging data set, amounts to a non-trivial deconvolution problem which is of critical importance for downstream analyses. While a number of formulations have been proposed for this task in the recent literature, in this article, we focus on a formulation recently proposed in Jewell and Witten (2018. Exact spike train inference via $\ell_{0} $ optimization. The Annals of Applied Statistics12(4), 2457-2482) that can accurately estimate not just the spike rate, but also the specific times at which the neuron spikes. We develop a much faster algorithm that can be used to deconvolve a fluorescence trace of 100 000 timesteps in less than a second. Furthermore, we present a modification to this algorithm that precludes the possibility of a "negative spike". We demonstrate the performance of this algorithm for spike deconvolution on calcium imaging datasets that were recently released as part of the $\texttt{spikefinder}$ challenge (http://spikefinder.codeneuro.org/). The algorithm presented in this article was used in the Allen Institute for Brain Science's "platform paper" to decode neural activity from the Allen Brain Observatory; this is the main scientific paper in which their data resource is presented. Our $\texttt{C++}$ implementation, along with $\texttt{R}$ and $\texttt{python}$ wrappers, is publicly available. $\texttt{R}$ code is available on $\texttt{CRAN}$ and $\texttt{Github}$, and $\texttt{python}$ wrappers are available on $\texttt{Github}$; see https://github.com/jewellsean/FastLZeroSpikeInference.


Assuntos
Cálcio , Neurônios , Algoritmos , Encéfalo/diagnóstico por imagem , Diagnóstico por Imagem , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa