Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35180381

RESUMO

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Imunidade nas Mucosas , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Citocinas/sangue , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Vetores Genéticos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Neutralização , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Nucleocapsídeo/metabolismo , Pan troglodytes , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
Nat Immunol ; 23(12): 1687-1702, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36456739

RESUMO

Aside from centrally induced trained immunity in the bone marrow (BM) and peripheral blood by parenteral vaccination or infection, evidence indicates that mucosal-resident innate immune memory can develop via a local inflammatory pathway following mucosal exposure. However, whether mucosal-resident innate memory results from integrating distally generated immunological signals following parenteral vaccination/infection is unclear. Here we show that subcutaneous Bacillus Calmette-Guérin (BCG) vaccination can induce memory alveolar macrophages (AMs) and trained immunity in the lung. Although parenteral BCG vaccination trains BM progenitors and circulating monocytes, induction of memory AMs is independent of circulating monocytes. Rather, parenteral BCG vaccination, via mycobacterial dissemination, causes a time-dependent alteration in the intestinal microbiome, barrier function and microbial metabolites, and subsequent changes in circulating and lung metabolites, leading to the induction of memory macrophages and trained immunity in the lung. These data identify an intestinal microbiota-mediated pathway for innate immune memory development at distal mucosal tissues and have implications for the development of next-generation vaccine strategies against respiratory pathogens.


Assuntos
Vacina BCG , Macrófagos Alveolares , Imunidade Treinada , Pulmão , Vacinação , Imunidade Inata
3.
Cell ; 175(6): 1634-1650.e17, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30433869

RESUMO

Innate immune memory is an emerging area of research. However, innate immune memory at major mucosal sites remains poorly understood. Here, we show that respiratory viral infection induces long-lasting memory alveolar macrophages (AMs). Memory AMs are programed to express high MHC II, a defense-ready gene signature, and increased glycolytic metabolism, and produce, upon re-stimulation, neutrophil chemokines. Using a multitude of approaches, we reveal that the priming, but not maintenance, of memory AMs requires the help from effector CD8 T cells. T cells jump-start this process via IFN-γ production. We further find that formation and maintenance of memory AMs are independent of monocytes or bone marrow progenitors. Finally, we demonstrate that memory AMs are poised for robust trained immunity against bacterial infection in the lung via rapid induction of chemokines and neutrophilia. Our study thus establishes a new paradigm of immunological memory formation whereby adaptive T-lymphocytes render innate memory of mucosal-associated macrophages.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Inata , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Memória Imunológica , Pulmão/citologia , Macrófagos Alveolares/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Monócitos/citologia , Monócitos/imunologia , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Linfócitos T Auxiliares-Indutores/citologia
6.
Pharm Res ; 40(5): 1165-1176, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36991226

RESUMO

PURPOSE: Intratracheal delivery and consistent dosing of dry powder vaccines is especially challenging in mice. To address this issue, device design of positive pressure dosators and actuation parameters were assessed for their impacts on powder flowability and in vivo dry powder delivery. METHODS: A chamber-loading dosator assembled with stainless-steel, polypropylene or polytetrafluoroethylene needle-tips was used to determine optimal actuation parameters. Powder loading methods including tamp-loading, chamber-loading and pipette tip-loading were compared to assess performance of the dosator delivery device in mice. RESULTS: Available dose was highest (45%) with a stainless-steel tip loaded with an optimal mass and syringe air volume, primarily due to the ability of this configuration to dissipate static charge. However, this tip encouraged more agglomeration along its flow path in the presence of humidity and was too rigid for intubation of mice compared to a more flexible polypropylene tip. Using optimized actuation parameters, the polypropylene pipette tip-loading dosator achieved an acceptable in vivo emitted dose of 50% in mice. After administering two doses of a spray dried adenovirus encapsulated in mannitol-dextran, high bioactivity was observed in excised mouse lung tissue three days post-infection. CONCLUSIONS: This proof-of-concept study demonstrates for the first time that intratracheal delivery of a thermally stable, viral-vectored dry powder can achieve equivalent bioactivity to the same powder, reconstituted and delivered intratracheally. This work may guide the design and device selection process for murine intratracheal delivery of dry powder vaccines to help progress this promising area of inhalable therapeutics.


Assuntos
Produtos Biológicos , Animais , Camundongos , Administração por Inalação , Pós , Polipropilenos , Aço , Inaladores de Pó Seco , Tamanho da Partícula , Aerossóis
7.
FASEB J ; 35(3): e21409, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33577115

RESUMO

The COVID-19 pandemic has unfolded to be the most challenging global health crisis in a century. In 11 months since its first emergence, according to WHO, the causative infectious agent SARS-CoV-2 has infected more than 100 million people and claimed more than 2.15 million lives worldwide. Moreover, the world has raced to understand the virus and natural immunity and to develop vaccines. Thus, within a short 11 months a number of highly promising COVID-19 vaccines were developed at an unprecedented speed and are now being deployed via emergency use authorization for immunization. Although a considerable number of review contributions are being published, all of them attempt to capture only a specific aspect of COVID-19 or its therapeutic approaches based on ever-expanding information. Here, we provide a comprehensive overview to conceptually thread together the latest information on global epidemiology and mitigation strategies, clinical features, viral pathogenesis and immune responses, and the current state of vaccine development.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Imunidade/imunologia , Pandemias/prevenção & controle , Animais , Humanos , Imunização/métodos , SARS-CoV-2/imunologia
8.
J Immunol ; 205(10): 2750-2762, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32998983

RESUMO

Mycobacterium tuberculosis, the causative agent of pulmonary tuberculosis (TB), is responsible for millions of infections and deaths annually. Decades of TB vaccine development have focused on adaptive T cell immunity, whereas the importance of innate immune contributions toward vaccine efficacy has only recently been recognized. Airway macrophages (AwM) are the predominant host cell during early pulmonary M. tuberculosis infection and, therefore, represent attractive targets for vaccine-mediated immunity. We have demonstrated that respiratory mucosal immunization with a viral-vectored vaccine imprints AwM, conferring enhanced protection against heterologous bacterial challenge. However, it is unknown if innate immune memory also protects against M. tuberculosis In this study, by using a murine model, we detail whether respiratory mucosal TB vaccination profoundly alters the airway innate immune landscape associated with AwM prior to M. tuberculosis exposure and whether such AwM play a critical role in host defense against M. tuberculosis infection. Our study reveals an important role of AwM in innate immune protection in early stages of M. tuberculosis infection in the lung.


Assuntos
Imunidade Inata , Macrófagos Alveolares/imunologia , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/imunologia , Administração através da Mucosa , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/prevenção & controle , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
9.
Trends Immunol ; 39(5): 419-433, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29429859

RESUMO

Despite some major progress made in developing tuberculosis (TB) vaccine strategies, with a dozen novel vaccines currently in the clinical pipeline, the world is still missing an effective TB vaccine. This questions whether any major breakthroughs can be achieved without making a drastic departure from the current strategy, which creates a state of 'near-natural immunity', imitating the natural immunity developed after Mycobacterium tuberculosis (Mtb) infection. Here, we argue instead that mounting evidence suggests an effective strategy ought to induce a state of all-around 'un-natural' immunity comprising trained innate immunity (TII), tissue-resident memory T cells (TRM), and anti-Mtb surface antibodies in the lung. Thus, here we summarize the latest information, thinking, and development in the field of TB and vaccines.


Assuntos
Imunidade Inata/fisiologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/imunologia , Animais , Humanos , Memória Imunológica/imunologia , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia
10.
J Immunol ; 200(5): 1746-1760, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29374077

RESUMO

Mycobacterium tuberculosis, the pathogen causing pulmonary tuberculosis (TB) in humans, has evolved to delay Th1 immunity in the lung. Although conventional dendritic cells (cDCs) are known to be critical to the initiation of T cell immunity, the differential roles and molecular mechanisms of migratory CD11b+ and CD103+ cDC subsets in anti-M. tuberculosis Th1 activation remain unclear. Using a murine model of pulmonary M. tuberculosis infection, we found that slow arrival of M. tuberculosis-bearing migratory CD11b+ and CD103+ cDCs at the draining lymph nodes preceded the much-delayed Th1 immunity and protection in the lung. Contrary to their previously described general roles in Th polarization, CD11b+ cDCs, but not CD103+ cDCs, were critically required for Th1 activation in draining lymph nodes following M. tuberculosis infection. CD103+ cDCs counterregulated CD11b+ cDC-mediated Th1 activation directly by producing the immune-suppressive cytokine IL-10. Thus, our study provides new mechanistic insights into differential Th immune regulation by migratory cDC subsets and helps to develop novel vaccines and therapies.


Assuntos
Antígenos CD/imunologia , Antígeno CD11b/imunologia , Células Dendríticas/imunologia , Cadeias alfa de Integrinas/imunologia , Interleucina-10/imunologia , Mycobacterium tuberculosis/imunologia , Células Th1/imunologia , Tuberculose Pulmonar/imunologia , Animais , Feminino , Linfonodos/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL
11.
J Infect Dis ; 220(8): 1355-1366, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31198944

RESUMO

BACKGROUND: The development of strategies to accelerate disease resolution and shorten antibiotic therapy is imperative in curbing the global tuberculosis epidemic. Therapeutic application of novel vaccines adjunct to antibiotics represents such a strategy. METHODS: By using a murine model of pulmonary tuberculosis (TB), we have investigated whether a single respiratory mucosal therapeutic delivery of a novel chimpanzee adenovirus-vectored vaccine expressing Ag85A (AdCh68Ag85A) accelerates TB disease control in conjunction with antibiotics and restricts pulmonary disease rebound after premature (nonsterilizing) antibiotic cessation. RESULTS: We find that immunotherapy via the respiratory mucosal, but not parenteral, route significantly accelerates pulmonary mycobacterial clearance, limits lung pathology, and restricts disease rebound after premature antibiotic cessation. We further show that vaccine-activated antigen-specific T cells, particularly CD8 T cells, in the lung play an important role in immunotherapeutic effects. CONCLUSIONS: Our results indicate that a single-dose respiratory mucosal immunotherapy with AdCh68Ag85A adjunct to antibiotic therapy has the potential to significantly accelerate disease control and shorten the duration of conventional treatment. Our study provides the proof of principle to support therapeutic applications of viral-vectored vaccines via the respiratory route.


Assuntos
Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/terapia , Vacinação/métodos , Aciltransferases/genética , Aciltransferases/imunologia , Adenoviridae/genética , Administração Intranasal , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Terapia Combinada/métodos , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Humanos , Esquemas de Imunização , Injeções Intramusculares , Camundongos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Mucosa Nasal , Pan troglodytes/virologia , Estudo de Prova de Conceito , Vacinas contra a Tuberculose/genética , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
12.
J Immunol ; 199(7): 2555-2569, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28827285

RESUMO

Although most novel tuberculosis (TB) vaccines are designed for delivery via the muscle or skin for enhanced protection in the lung, it has remained poorly understood whether systemic vaccine-induced memory T cells can readily home to the lung mucosa prior to and shortly after pathogen exposure. We have investigated this issue by using a model of parenteral TB immunization and intravascular immunostaining. We find that systemically induced memory T cells are restricted to the blood vessels in the lung, unable to populate either the lung parenchymal tissue or the airway under homeostatic conditions. We further find that after pulmonary TB infection, it still takes many days before such T cells can enter the lung parenchymal tissue and airway. We have identified the acquisition of CXCR3 expression by circulating T cells to be critical for their entry to these lung mucosal compartments. Our findings offer new insights into mucosal T cell biology and have important implications in vaccine strategies against pulmonary TB and other intracellular infections in the lung.


Assuntos
Pulmão/imunologia , Mycobacterium tuberculosis/imunologia , Receptores CXCR3/metabolismo , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/imunologia , Transferência Adotiva , Animais , Antígenos de Bactérias/imunologia , Linfócitos T CD8-Positivos/imunologia , Movimento Celular , Imunização , Memória Imunológica , Leucócitos/imunologia , Pulmão/citologia , Pulmão/microbiologia , Camundongos , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/microbiologia , Transdução de Sinais , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/microbiologia
13.
J Infect Dis ; 216(1): 135-145, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28531291

RESUMO

Background: The translation of preclinically promising novel tuberculosis vaccines to ultimate human applications has been challenged by the lack of animal models with an immune system equivalent to the human immune system in its genetic diversity and level of susceptibility to tuberculosis. Methods: We have developed a humanized mice (Hu-mice) tuberculosis model system to investigate the clinical relevance of a novel virus-vectored (VV) tuberculosis vaccine administered via respiratory mucosal or parenteral route. Results: We find that VV vaccine activates T cells in Hu-mice as it does in human vaccinees. The respiratory mucosal route for delivery of VV vaccine in Hu-mice, but not the parenteral route, significantly reduces the humanlike lung tuberculosis outcomes in a human T-cell-dependent manner. Conclusions: Our results suggest that the Hu-mouse can be used to predict the protective efficacy of novel tuberculosis vaccines/strategies before they proceed to large, expensive human trials. This new vaccine testing system will facilitate the global pace of clinical tuberculosis vaccine development.


Assuntos
Vacina BCG/administração & dosagem , Imunidade nas Mucosas , Mucosa Respiratória/imunologia , Tuberculose Pulmonar/imunologia , Animais , Antígenos Virais/sangue , Antígenos Virais/imunologia , Vacina BCG/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Vetores Genéticos/imunologia , Humanos , Imunização , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/prevenção & controle
14.
J Immunol ; 195(6): 2900-7, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26268652

RESUMO

Emerging evidence suggests a role of B cells in host defense against primary pulmonary tuberculosis (TB). However, the role of B cells in TB vaccine-induced protective T cell immunity still remains unknown. Using a viral-vectored model TB vaccine and a number of experimental approaches, we have investigated the role of B cells in respiratory mucosal vaccine-induced T cell responses and protection against pulmonary TB. We found that respiratory mucosal vaccination activated Ag-specific B cell responses. Whereas respiratory mucosal vaccination elicited Ag-specific T cell responses in the airway and lung interstitium of genetic B cell-deficient (Jh(-/-) knockout [KO]) mice, the levels of airway T cell responses were lower than in wild-type hosts, which were associated with suboptimal protection against pulmonary Mycobacterium tuberculosis challenge. However, mucosal vaccination induced T cell responses in the airway and lung interstitium and protection in B cell-depleted wild-type mice to a similar extent as in B cell-competent hosts. Furthermore, by using an adoptive cell transfer approach, reconstitution of B cells in vaccinated Jh(-/-) KO mice did not enhance anti-TB protection. Moreover, respiratory mucosal vaccine-activated T cells alone were able to enhance anti-TB protection in SCID mice, and the transfer of vaccine-primed B cells alongside T cells did not further enhance such protection. Alternatively, adoptively transferring vaccine-primed T cells from Jh(-/-) KO mice into SCID mice only provided suboptimal protection. These data together suggest that B cells play a minimal role, and highlight a central role by T cells, in respiratory mucosal vaccine-induced protective immunity against M. tuberculosis.


Assuntos
Aciltransferases/imunologia , Antígenos de Bactérias/imunologia , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/imunologia , Transferência Adotiva , Animais , Linfócitos B/transplante , Feminino , Imunidade nas Mucosas/imunologia , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos SCID , Mycobacterium tuberculosis/imunologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/microbiologia , Tuberculose Pulmonar/prevenção & controle , Vacinação
15.
J Infect Dis ; 214(12): 1996-2005, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27703038

RESUMO

BACKGROUND: Whether a candidate tuberculosis vaccine induces clinically relevant protective T-cell repertoires in humans will not be known until the completion of costly efficacy clinical trials. METHODS: We have developed an integrated immunologic approach to investigate the clinical relevance of T cells induced by a novel tuberculosis vaccine in a phase 1 trial. This approach consists of screening for likely dominant T-cell epitopes, establishing antigen-specific memory T-cell lines for identifying CD8+ and CD4+ T-cell epitopes, determining the ability of vaccine-induced T cells to inhibit mycobacterial growth in infected cells, and examining the genetic diversity of HLA recognition and the clinical relevance of identified T-cell epitopes. RESULTS: A single-dose immunization in BCG-primed adults with an adenovirus-based tuberculosis vaccine elicits a repertoire of memory T cells capable of recognizing multiple Ag85A epitopes. These T cells are polyfunctional and cytotoxic and can inhibit mycobacterial growth in infected target cells. Some identified T-cell epitopes are promiscuous and recognizable by the common HLA alleles. These epitopes are clinically relevant to the epitopes identified in people with latent Mycobacterium tuberculosis infection and treated patients with tuberculosis. CONCLUSIONS: These data support further clinical development of this candidate vaccine. Our approach helps fill the gap in clinical tuberculosis vaccine development.


Assuntos
Adenoviridae/genética , Portadores de Fármacos , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Aciltransferases/genética , Aciltransferases/imunologia , Adulto , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Humanos , Mycobacterium tuberculosis/genética , Tuberculose/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/genética , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
16.
Eur J Immunol ; 44(5): 1375-86, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24519467

RESUMO

The immune mechanisms underlying delayed induction of Th1-type immunity in the lungs following pulmonary mycobacterial infection remain poorly understood. We have herein investigated the underlying immune mechanisms for such delayed responses and whether a selected innate immune-modulating strategy can accelerate Th1-type responses. We have found that, in the early stage of pulmonary infection with attenuated Mycobacterium tuberculosis (M.tb H37Ra), the levels of infection in the lung continue to increase logarithmically until days 14 and 21 postinfection in C57BL/6 mice. The activation of innate immune responses, particularly DCs, in the lung is delayed. This results in a delay in the subsequent downstream immune responses including the migration of antigen-bearing DCs to the draining lymph node (dLN), the Th1-cell priming in dLN, and the recruitment of Th1 cells to the lung. However, single lung mucosal exposure to the TLR agonist FimH postinfection is able to accelerate protective Th1-type immunity via facilitating DC migration to the lung and draining lymph nodes, enhancing DC antigen presentation and Th1-cell priming. These findings hold implications for the development of immunotherapeutic and vaccination strategies and suggest that enhancement of early innate immune activation is a viable option for improving Th1-type immunity against pulmonary mycobacterial diseases.


Assuntos
Células Dendríticas/imunologia , Imunidade Inata , Pulmão/imunologia , Mycobacterium tuberculosis/imunologia , Células Th1/imunologia , Tuberculose Pulmonar/imunologia , Animais , Células Dendríticas/microbiologia , Células Dendríticas/patologia , Pulmão/microbiologia , Pulmão/patologia , Linfonodos/imunologia , Linfonodos/microbiologia , Linfonodos/patologia , Camundongos , Camundongos Transgênicos , Células Th1/patologia , Fatores de Tempo , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/patologia
17.
Am J Pathol ; 183(3): 868-80, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23831294

RESUMO

Bacterial superinfection and associated lung immunopathology are major contributors to hospitalizations and mortality after influenza. However, the underlying mechanisms and effective intervention strategies remain poorly defined. By using a model of influenza and pneumococcal superinfection, we found that dual-infected animals experienced rapid weight loss and succumbed to infection. Bacterial outgrowth, dysregulated cytokines, including keratinocyte-derived chemokine and macrophage inflammatory protein 2, and severe lung neutrophilia and immunopathology were linked to the poor clinical outcome. In vivo neutralization of highly induced macrophage inflammatory protein 2 did not affect clinical outcome, bacterial loads, or lung immunopathology. On the other hand, in vivo neutrophil depletion did not alter the clinical outcome and bacterial burden, although it moderately improved lung immunopathology. Treatment with a bacteriostatic antibiotic, azithromycin, alone significantly improved clinical outcome and bacterial clearance, but failed to reduce lung immunopathology. In comparison, treatment with a global inflammation inhibitor, dexamethasone, alone failed to alter clinical outcome, bacterial infection, and immunopathology, despite its moderate reducing effects on neutrophilic and cytokine responses. In contrast, combined treatment with both azithromycin and dexamethasone best improved clinical outcome, bacterial clearance, lung cellular and cytokine responses, and immunopathology. Our study suggests that marked improvement of clinical outcome and lung immunopathology caused by bacterial superinfection requires the control of both bacterial infection and aberrant host immune responses. Our findings hold implications in clinical management for influenza-associated bacterial superinfections.


Assuntos
Imunidade/imunologia , Vírus da Influenza A/fisiologia , Pulmão/imunologia , Pulmão/patologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Superinfecção/microbiologia , Superinfecção/virologia , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Quimiocina CXCL2/metabolismo , Quimiocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/microbiologia , Suscetibilidade a Doenças/patologia , Suscetibilidade a Doenças/virologia , Feminino , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Imunidade/efeitos dos fármacos , Imunoterapia , Vírus da Influenza A/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Infiltração de Neutrófilos/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/microbiologia , Infecções por Orthomyxoviridae/patologia , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/patologia , Streptococcus pneumoniae/efeitos dos fármacos , Superinfecção/tratamento farmacológico , Superinfecção/patologia , Resultado do Tratamento
18.
Trends Immunol ; 31(7): 247-52, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20542470

RESUMO

Protection against pulmonary tuberculosis (TB) by vaccination is often ascribed to the presence of TB-reactive T cells in the lung before infection. Challenging this view, new studies analyzing vaccine-induced T cells in various tissue compartments after parenteral immunization suggest a poor correlation between the presence of anti-TB T cells in the lung interstitium and spleen before Mycobacterium tuberculosis exposure and protection. In contrast, respiratory mucosal immunization leads to distribution of T cells not only in the lung interstitium and spleen, but also in the airway lumen, and the presence of these cells correlates well with protection. Furthermore, airway luminal recruitment of parenteral vaccine-induced T cells in peripheral tissues prior to M. tuberculosis challenge restores protection. We propose that understanding the biology of airway luminal T cells holds important implications for developing effective TB vaccination strategies.


Assuntos
Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/prevenção & controle , Animais , Humanos
19.
J Infect Dis ; 206(8): 1194-205, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22732919

RESUMO

BACKGROUND: One-third of the world's population has latent infection with Mycobacterium tuberculosis, and 10%-15% of cases of reactivation occur at extrapulmonary sites without active pulmonary tuberculosis. METHODS: To establish the frequency and location of mycobacterial DNA, organ specimens from 49 individuals who died from causes other than tuberculosis were studied by means of polymerase chain reaction (PCR), PCR plus DNA hybridization, in situ PCR, real-time PCR, and spoligotyping. RESULTS: Lung specimens from most subjects (36) were positive for M. tuberculosis, as were specimens from the spleen (from 35 subjects), kidney (from 34), and liver (from 33). By in situ PCR, mycobacterial DNA was found in endothelium, pneumocytes, and macrophages from the lung and in Bowman's parietal cells and convoluted proximal tubules from the kidney. In spleen, macrophages and sinusoidal endothelial cells were positive, whereas in liver, Kupffer cells and sinusoidal endothelium were commonly positive. Spoligotyping of 54 pulmonary and extrapulmonary positive tissues from 30 subjects showed 43 different genotypes, including 36 orphan types. To confirm the viability of mycobacteria, 10 positive tissue samples were selected for isolation of mycobacterial RNA. All samples showed 16S ribosomal RNA expression, while 8 and 4 samples showed expression of the latent infection genes encoding isocitrate lyase and α-crystallin, respectively. CONCLUSIONS: M. tuberculosis persists in several sites and cell types that might constitute reservoirs that can reactivate infection, producing extrapulmonary tuberculosis without lung involvement.


Assuntos
DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Tuberculose Latente/microbiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Rim/microbiologia , Fígado/microbiologia , Pulmão/microbiologia , Masculino , Pessoa de Meia-Idade , Tipagem Molecular , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase , Baço/microbiologia , Adulto Jovem
20.
Curr Opin Immunol ; 84: 102370, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37499279

RESUMO

Increasing global concerns of pandemic respiratory viruses highlight the importance of developing optimal vaccination strategies that encompass vaccine platform, delivery route, and regimens. The decades-long effort to develop vaccines to combat respiratory infections such as influenza, respiratory syncytial virus, and tuberculosis has met with challenges, including the inability of systemically administered vaccines to induce respiratory mucosal (RM) immunity. In this regard, ample preclinical and available clinical studies have demonstrated the superiority of RM vaccination to induce RM immunity over parenteral route of vaccination. A great stride has been made in developing vaccines for RM delivery against respiratory pathogens, including M. tuberculosis and SARS-CoV-2. In particular, inhaled aerosol delivery of adenoviral-vectored vaccines has shown significant promise.


Assuntos
COVID-19 , Vacinas contra Influenza , Mycobacterium tuberculosis , Tuberculose , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Anticorpos Antivirais , Imunidade nas Mucosas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa