Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 19(35): 7695-7700, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524312

RESUMO

Fluorescent probes have become valuable tools in chemical biology, providing interesting inferences for unfolding the complexities of natural biochemical processes. In this study, we report the synthesis and characterization of fluorescent labelled glutamine (Gln) and asparagine (Asn) derivatives via traceless Staudinger ligation, which exhibited high fluorescence quantum yields, excellent photostabilities and emission of blue fluorescence in the visible region. The successful permeation of these fluorescent amino acids into cellular components proved their potential as fluorescent probes for chemical biology.


Assuntos
Asparagina
2.
Microb Ecol ; 79(2): 367-382, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31346687

RESUMO

We examined the bacterial endophyte-enriched root-associated microbiome within rice (Oryza sativa) 55 days after growth in soil with and without urea fertilizer and/or biofertilization with a growth-promotive bacterial strain (Rhizobium leguminosarum bv. trifolii E11). After treatment to deplete rhizosphere/rhizoplane communities, washed roots were macerated and their endophyte-enriched communities were analyzed by 16S ribosomal DNA 454 amplicon pyrosequencing. This analysis clustered 99,990 valid sequence reads into 1105 operational taxonomic units (OTUs) with 97% sequence identity, 133 of which represented a consolidated core assemblage representing 12.04% of the fully detected OTU richness. Taxonomic affiliations indicated Proteobacteria as the most abundant phylum (especially α- and γ-Proteobacteria classes), followed by Firmicutes, Bacteroidetes, Verrucomicrobia, Actinobacteria, and several other phyla. Dominant genera included Rheinheimera, unclassified Rhodospirillaceae, Pseudomonas, Asticcacaulis, Sphingomonas, and Rhizobium. Several OTUs had close taxonomic affiliation to genera of diazotrophic rhizobacteria, including Rhizobium, unclassified Rhizobiales, Azospirillum, Azoarcus, unclassified Rhizobiaceae, Bradyrhizobium, Azonexus, Mesorhizobium, Devosia, Azovibrio, Azospira, Azomonas, and Azotobacter. The endophyte-enriched microbiome was restructured within roots receiving growth-promoting treatments. Compared to the untreated control, endophyte-enriched communities receiving urea and/or biofertilizer treatments were significantly reduced in OTU richness and relative read abundances. Several unique OTUs were enriched in each of the treatment communities. These alterations in structure of root-associated communities suggest dynamic interactions in the host plant microbiome, some of which may influence the well-documented positive synergistic impact of rhizobial biofertilizer inoculation plus low doses of urea-N fertilizer on growth promotion of rice, considered as one of the world's most important food crops.


Assuntos
Endófitos/fisiologia , Fertilizantes , Microbiota/fisiologia , Oryza/microbiologia , Raízes de Plantas/microbiologia , Ureia/metabolismo , Endófitos/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Oryza/efeitos dos fármacos , Oryza/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Rhizobiaceae/química , Rizosfera , Microbiologia do Solo , Ureia/administração & dosagem
3.
Int J Phytoremediation ; 22(14): 1487-1496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32602350

RESUMO

This study focused on isolation of bacteria with biphenyl/polychlorinated biphenyl (PCB) degrading ability from the rhizosphere of Morus alba (mulberry plant). Repetitive enrichment of rhizospheric soil samples with biphenyl resulted in the isolation of Rhodococcus sp. MAPN-1, identified by 16S rRNA gene sequence analysis. The bacterium showed growth on five different aromatic compounds (naphthalene, salicylic acid, benzoic acid, dibenzofuran and anthracene). Benzoic acid was detected as the major metabolite during biphenyl degradation using high-performance thin-layer chromatography (HPTLC) with Rf 0.42 at 254 nm. Further GC-MS/MS study showed 95% and 15% degradation of biphenyl and dichlorobiphenyl, respectively. A pot study was conducted to evaluate the effect of presence of biphenyl on M. alba and the role of biphenyl degrader Rhodococcus sp. MAPN-1 in relation to phytoremediation. Morus alba twigs in biphenyl spiked soil (100 mg/kg and 300 mg/kg) inoculated with Rhodococcus sp. MAPN-1 showed growth, whereas, growth of plants (control) was adversely affected in biphenyl-spiked uninoculated soil. It is the first report of isolation of Rhodococcus sp. MAPN-1 from the rhizosphere of Morus alba, its capability to degrade biphenyl, thereby showing a positive effect on the plant growth grown in biphenyl spiked soil.


Assuntos
Morus , Bifenilos Policlorados , Rhodococcus , Biodegradação Ambiental , Compostos de Bifenilo , Oligopeptídeos , RNA Ribossômico 16S/genética , Rhodococcus/genética , Microbiologia do Solo , Espectrometria de Massas em Tandem
4.
Org Biomol Chem ; 17(24): 5962-5970, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31157355

RESUMO

A simple and highly efficient strategy has been developed for the synthesis of 2-amidobenzoic acids through the tert-butyl hydroperoxide (TBHP)-mediated oxygenation and sequential ring opening of 2-arylindoles in a one-pot fashion under metal-free aerobic conditions. The developed synthetic protocol is operationally simple, tolerates a wide range of functional groups, and is amenable to the gram-scale. Radical trapping experiments revealed that the reaction involves a radical pathway. The synthesized compounds (2a-s) were tested for in vitro antimicrobial activity. Among all screened compounds, 2d showed the maximum antibacterial activity against P. aerugunosa (ZOI = 17 mm, MIC = 32 µg mL-1) and compounds 2d and 2p showed the maximum (32 µg mL-1) antifungal activity against A. flavus and C. albicans.

5.
Mol Divers ; 22(2): 305-321, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29238888

RESUMO

A series of amino-substituted [Formula: see text]-cyanostilbene derivatives and their bile acid (cholic and deoxycholic acid) amides were designed and synthesized. A comparative study on the anticancer and antibacterial activity evaluation on the synthesized analogs was carried against the human osteosarcoma (HOS) cancer cell line, and two gram -ve (E. coli and S. typhi) and two gram [Formula: see text]ve (B. subtilis and S. aureus) bacterial strains. All the cholic acid [Formula: see text]-cyanostilbene amides showed an [Formula: see text] in the range 2-13 [Formula: see text] against human osteosarcoma cells (HOS) with the most active analog (6g) possessing an [Formula: see text] of [Formula: see text]. One of the amino-substituted [Formula: see text]-cyanostilbene, 4e, was found to possess an [Formula: see text] of [Formula: see text]. An increase in the number of cells at the sub-[Formula: see text] phase of the cell was observed in the in vitro cell cycle analysis of two most active compounds in the series (4e, 6g) suggesting a clear indication toward induction of apoptotic cascade. With respect to antibacterial screening, amino-substituted [Formula: see text]-cyanostilbenes were found to be more active than their corresponding bile acid amides. The synthesized compounds were also subjected to in silico study to predict their physiochemical properties and drug-likeness score.


Assuntos
Amidas/química , Ácidos e Sais Biliares/síntese química , Ácidos e Sais Biliares/farmacologia , Estilbenos/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Bactérias/citologia , Bactérias/efeitos dos fármacos , Ácidos e Sais Biliares/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Relação Estrutura-Atividade
6.
Environ Technol ; : 1-14, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682050

RESUMO

ABSTRACTEnvironmental concerns and rising biosurfactant demand emphasize the need for this study. The objective is to maximize rhamnolipid-biosurfactant production by Pseudomonas aeruginosa (SSL-4) utilizing waste engine oil (WEO) as the sole substrate for use in soil bioremediation and commercial production. Using an L16 Taguchi orthogonal array, a signal-to-noise ratio, and an analysis of variance (ANOVA), the effects of environmental (pH, incubation temperature) and dietary parameters (carbon source concentration, carbon/nitrogen (C/N) and carbon/phosphorus (C/P) ratio) are examined. Variations of the following parameters were made within a carefully selected range: incubation temperature of 25-40℃, pH range of 5-11, WEO concentration of 1-7% (v/v), and C/N and C/P ratios of 10-40. Response variables in this batch study include surface tension reduction (mN/m), dry cell biomass (DCBM) (g/L), and rhamnolipids yield based on substrate consumption, YP/S (g/g). Rhamnolipid was synthesized under optimal conditions, providing a yield of 21.42 g/g. The oil recovery of 74.05 ± 1.481% was achieved from oil-contaminated soil at a CMC of ∼70 mg/L. FTIR, 1H NMR, and UPLC-MS techniques were utilized for the characterization of rhamnolipids, and AAS for determining heavy metals concentration in WEO and residual waste engine oil (RWEO). The Germination Index (GI) of ∼82.55% indicated no phytotoxicity associated with synthesized rhamnolipid.

7.
J Basic Microbiol ; 52(5): 549-58, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22359218

RESUMO

Plant growth-promoting bacteria with the ability to tolerate heavy metals have importance both in sustainable agriculture and phytoremediation. The present study reports on the isolation and characterization of mineral phosphate-solubilizing (MPS) bacteria associated with the Achyranthes aspera L. plant (prickly chaff, flower plant). Out of 35 bacterial isolates, 6 isolates, namely RS7, RP23, EPR1, RS5, RP11 and RP19, with high MPS activity were selected and subjected to the assessment of MPS activity under various stress conditions, viz. ZnSO(4) (0.30-1.5 M), NaCl and temperature. MPS activity by the selected isolates was observed at concentrations of as high as >1.2 M ZnSO(4). Significant improvement in plant growth was observed on bacterization of seeds (pearl millet) with all of the six selected isolates. Plant growth was measured in terms of root length, shoot length, fresh weight and % increase in root biomass. The molecular diversity among the phosphate-solubilizing bacteria was studied employing enterobacterial repetitive intergenic sequence-PCR (ERIC-PCR). Representative strains from each ERIC type were identified, on the basis of a partial sequence of the 16S rRNA gene, as members of the genera Pseudomonas, Citrobacter, Acinetobacter, Serratia, and Enterobacter. Among all the isolates, RP19 was the best in terms of phosphate-solubizing activity and its response to various stresses. The ability of RP19 and other isolates to exhibit MPS activity at high ZnSO(4) concentrations suggests their potential as efficient biofertilizer for growing plants in metal (ZnSO(4))-contaminated soil.


Assuntos
Antibacterianos/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Biodiversidade , Fosfatos/metabolismo , Zinco/toxicidade , Achyranthes/crescimento & desenvolvimento , Achyranthes/microbiologia , Antibacterianos/metabolismo , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Zinco/metabolismo
8.
PLoS One ; 17(4): e0266808, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35486615

RESUMO

Iron and steel industries are the major contributors to persistent organic pollutants (POPs). The microbial community present at such sites has the potential to remediate these contaminants. The present study highlights the metabolic potential of the resident bacterial community of PAHs and PCB contaminated soil nearby Bhilai steel plant, Chhattisgarh (India). The GC-MS/MS analysis of soil samples MGB-2 (sludge) and MGB-3 (dry soil) resulted in identification of different classes of POPs including PAHs {benzo[a]anthracene (nd; 17.69%), fluorene (15.89%, nd), pyrene (nd; 18.7%), benzo(b)fluoranthene (3.03%, nd), benzo(k)fluoranthene (11.29%; nd), perylene (5.23%; nd)} and PCBs (PCB-15, PCB-95, and PCB-136). Whole-genome metagenomic analysis by Oxford Nanopore GridION Technology revealed predominance of domain bacteria (97.4%; 97.5%) followed by eukaryote (1.4%; 1.5%), archaea (1.2%; 0.9%) and virus (0.02%; 0.04%) in MGB-2 and MGB-3 respectively. Proteobacteria (44.3%; 50.0%) to be the prominent phylum followed by Actinobacteria (22.1%; 19.5%) in MBG-2 and MBG-3, respectively. However, Eukaryota microbial communities showed a predominance of phylum Ascomycota (20.5%; 23.6%), Streptophyta (18.5%, 17.0%) and unclassified (derived from Eukaryota) (12.1%; 12.2%) in MGB-2 and MGB-3. The sample MGB-3 was richer in macronutrients (C, N, P), supporting high microbial diversity than MGB-2. The presence of reads for biphenyl degradation, dioxin degradation, PAH degradation pathways can be further correlated with the presence of PCB and PAH as detected in the MGB-2 and MGB-3 samples. Further, taxonomic vis-à-vis functional analysis identified Burkholderia, Bradyrhizobium, Mycobacterium, and Rhodopseudomonas as the keystone degrader of PAH and PCB. Overall, our results revealed the importance of metagenomic and physicochemical analysis of the contaminated site, which improves the understanding of metabolic potential and adaptation of bacteria growing under POP contaminated environments.


Assuntos
Bifenilos Policlorados , Poluentes do Solo , Bactérias/genética , Bactérias/metabolismo , Bifenilos Policlorados/análise , Solo , Poluentes do Solo/análise , Aço/análise , Espectrometria de Massas em Tandem
9.
Front Microbiol ; 13: 952374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225351

RESUMO

Polychlorinated biphenyls (PCBs) are persistent organic pollutants widely distributed in the environment and possess deleterious health effects. The main objective of the study was to obtain bacterial isolates from PCB-contaminated soil for enhanced biodegradation of PCB-77. Selective enrichment resulted in the isolation of 33 strains of PCB-contaminated soil nearby Bhilai steel plant, Chhattisgarh, India. Based on the prominent growth using biphenyl as the sole carbon source and the confirmation of its degradation by GC-MS/MS analysis, four isolates were selected for further study. The isolates identified by 16S rRNA gene sequencing were Pseudomonas aeruginosa MAPB-2, Pseudomonas plecoglossicida MAPB-6, Brucella anthropi MAPB-9, and Priestia megaterium MAPB-27. The isolate MAPB-9 showed a degradation of 66.15% biphenyl, while MAPB-2, MAPB-6, and MAPB-27 showed a degradation of 62.06, 57.02, and 56.55%, respectively in 48 h. Additionally, the degradation ability of these strains was enhanced with addition of co-metabolite glucose (0.2%) in the culture medium. Addition of glucose showed 100% degradation of biphenyl by MAPB-9, in 48 h, while MAPB-6, MAPB-2, and MAPB-27 showed 97.1, 67.5, and 53.3% degradation, respectively as analyzed by GC-MS/MS. Furthermore, in the presence of inducer, PCB-77 was found to be 59.89, 30.49, 27.19, and 4.43% degraded by MAPB-6, MAPB-9, MAPB-2, and MAPB-27, respectively in 7 d. The production of biosurfactants that aid in biodegradation process were observed in all the isolates. This was confirmed by ATR-FTIR analysis that showed the presence of major functional groups (CH2, CH3, CH, = CH2, C-O-C, C-O) of the biosurfactant. The biosurfactants were further identified by HPTLC and GC-MS/MS analysis. Present study is the first to report PCB-77 degradation potential of Pseudomonas aeruginosa, B. anthropi, Pseudomonas plecoglossicida, and Priestia megaterium. Similarly, this is the first report on Pseudomonas plecoglossicida and Priestia megaterium for PCB biodegradation. Our results suggest that the above isolates can be used for the biodegradation of biphenyl and PCB-77 in PCB-contaminated soil.

10.
Steroids ; 160: 108659, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32439407

RESUMO

Four novel deoxycholic acid tethered α-cyanostilbenes were designed, synthesized and characterized using detailed spectroscopic analysis. The synthesized deoxycholic acid tethered α-cyanostilbene derivatives formed stable gels with a variety of solvents, such as xylene, toluene, mesitylene, decane, dodecane etc. The stable gels showed lamellar sheet type structures stacked over each other, consisting of entangled fibres as evident from SEM, TEM and Fluorescence Microscopy images; The synthesized compounds exhibited AIEE behaviour in H2O/THF mixture, with the maximum emission observed in 70% H2O/THF fraction along with a bathochromic shift. A solvent thickening experiment was perform to establish the mechanism of AIEE and the AIEE property was explored for bacterial bio-imaging. The synthesized derivatized steroids proved their potential as multifunctional organic materials.


Assuntos
Acrilonitrila/análogos & derivados , Ácido Desoxicólico/química , Corantes Fluorescentes/química , Imagem Molecular , Serratia marcescens/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Acrilonitrila/química , Corantes Fluorescentes/síntese química , Géis/síntese química , Géis/química , Microscopia de Fluorescência , Conformação Molecular , Peso Molecular
11.
ACS Omega ; 3(11): 16338-16346, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458269

RESUMO

A new class of fused quinazolines has been designed and synthesized via copper-catalyzed Ullmann type C-N coupling followed by intramolecular cross-dehydrogenative coupling reaction in moderate to good yields. The synthesized compounds were tested for in vitro antibacterial activity against three Gram negative (Escherichia coli, Pseudomonas putida, and Salmonella typhi) and two Gram positive (Bacillus subtilis, and Staphylococcus aureus) bacteria. Among all tested compounds, 8ga, 8gc, and 8gd exhibited promising minimum inhibitory concentration (MIC) values (4-8 µg/mL) for all bacterial strains tested as compared to the positive control ciprofloxacin. The synthesized compounds were also evaluated for their in vitro antifungal activity against Aspergillus niger and Candida albicans and compounds 8ga, 8gc, and 8gd having potential antibacterial activity also showed pronounced antifungal activity (MIC values 8-16 µg/mL) against both strains. The bactericidal assay by propidium iodide and live-dead bacterial cell screening using a mixture of acridine orange/ethidium bromide (AO/Et·Br) showed considerable changes in the bacterial cell membrane, which might be the cause or consequence of cell death. Moreover, the hemolytic activity for most potent compounds (8ga, 8gc, and 8gd) showed their safety profile toward human blood cells.

12.
Front Microbiol ; 8: 1945, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29062306

RESUMO

Certain plant growth promoting bacteria have ability to ameliorate abiotic and/or biotic stressors, which can be exploited to enhance plant growth and productivity of the plants under stress conditions. Therefore, the present study aimed to examine the role of a rhizospheric bacterial isolate SBP-9 isolated from Sorghum bicolor (i) in promoting the wheat plant growth under salinity stress, and (ii) in enhancing the defense response in wheat against fungal pathogen "Fusarium graminearum." The test isolate possessed plant growth promoting (PGP) traits including ACC deaminase (ACCD), gibberellic acid, indole acetic acid (IAA), siderophore, and inorganic phosphate solubilization. Under salt (NaCl) stress, inoculation of this isolate to wheat plant significantly increased plant growth in terms of various growth parameters such as shoot length/root length (20-39%), fresh weight/dry weight (28-42%), and chlorophyll content (24-56%) following inoculation of test isolate SBP-9. Bacterial inoculation decreased the level of proline, and malondialdehyde, whereas elevated the antioxidative enzymatic activities of superoxide-dismutase (SOD; 28-41%), catalase (CAT; 24-56%), and peroxidase (POX; 26-44%). Furthermore, it also significantly decreased the Na+ accumulation in both shoot and roots in the range of 25-32%, and increased the K+ uptake by 20-28%, thereby favoring the K+/Na+ ratio. On the other hand, the test isolate also enhanced the level of defense enzymes like ß-1, 3 glucanase, phenylalanine ammonia lyase (PAL), peroxidae (PO), and polyphenol oxidase (PPO), which can protect plants from the infection of pathogens. The result of colonization test showed an ability of the test isolate to successfully colonize the wheat plants. These results indicate that Stenotrophomonas maltophilia SBP-9 has potential to promote the wheat growth under biotic and abiotic (salt) stressors directly or indirectly and can be further tested at field level for exploitation as bioinoculant.

13.
Front Plant Sci ; 7: 1890, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018415

RESUMO

Certain plant growth promoting bacteria can protect associated plants from harmful effects of salinity. We report the isolation and characterization of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase bacterium Bacillus licheniformis HSW-16 capable of ameliorating salt (NaCl) stress in wheat plants. The bacterium was isolated from the water of Sambhar salt lake, Rajasthan, India. The presence of ACC deaminase activity was confirmed by enzyme assay and analysis of AcdS gene, a structural gene for ACC deaminase. Inoculation of B. licheniformis HSW-16 protected wheat plants from growth inhibition caused by NaCl and increased plant growth (6-38%) in terms of root length, shoot length, fresh weight, and dry weight. Ionic analysis of plant samples showed that the bacterial inoculation decreased the accumulation of Na+ content (51%), and increased K+ (68%), and Ca2+ content (32%) in plants at different concentration of NaCl. It suggested that bacterial inoculation protected plants from the effect of NaCl by decreasing the level of Na+ in plants. Production of exopolysaccharide by the B. licheniformis HSW-16 can also protect from Na+ by binding this ion. Moreover, application of test isolate resulted in an increase in certain osmolytes such as total soluble sugar, total protein content, and a decrease in malondialdehyde content, illustrating their role in the protection of plants. The ability of B. licheniformis HSW-16 to colonize plant root surface was examined by staining the bacterium with acridine orange followed by fluorescence microscopy and polymerase chain reaction-based DNA finger printing analysis. These results suggested that B. licheniformis HSW-16 could be used as a bioinoculant to improve the productivity of plants growing under salt stress.

14.
Front Microbiol ; 6: 937, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441873

RESUMO

1-aminocyclopropane-1-carboxylate deaminase (ACCD), a pyridoxal phosphate-dependent enzyme, is widespread in diverse bacterial and fungal species. Owing to ACCD activity, certain plant associated bacteria help plant to grow under biotic and abiotic stresses by decreasing the level of "stress ethylene" which is inhibitory to plant growth. ACCD breaks down ACC, an immediate precursor of ethylene, to ammonia and α-ketobutyrate, which can be further metabolized by bacteria for their growth. ACC deaminase is an inducible enzyme whose synthesis is induced in the presence of its substrate ACC. This enzyme encoded by gene AcdS is under tight regulation and regulated differentially under different environmental conditions. Regulatory elements of gene AcdS are comprised of the regulatory gene encoding LRP protein and other regulatory elements which are activated differentially under aerobic and anaerobic conditions. The role of some additional regulatory genes such as AcdB or LysR may also be required for expression of AcdS. Phylogenetic analysis of AcdS has revealed that distribution of this gene among different bacteria might have resulted from vertical gene transfer with occasional horizontal gene transfer (HGT). Application of bacterial AcdS gene has been extended by developing transgenic plants with ACCD gene which showed increased tolerance to biotic and abiotic stresses in plants. Moreover, distribution of ACCD gene or its homolog's in a wide range of species belonging to all three domains indicate an alternative role of ACCD in the physiology of an organism. Therefore, this review is an attempt to explore current knowledge of bacterial ACC deaminase mediated physiological effects in plants, mode of enzyme action, genetics, distribution among different species, ecological role of ACCD and, future research avenues to develop transgenic plants expressing foreign AcdS gene to cope with biotic and abiotic stressors. Systemic identification of regulatory circuits would be highly valuable to express the gene under diverse environmental conditions.

15.
Front Microbiol ; 6: 1255, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26594209

RESUMO

[This corrects the article on p. 937 in vol. 6, PMID: 26441873.].

16.
J Photochem Photobiol B ; 71(1-3): 35-42, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-14705637

RESUMO

The effects of various irradiances of artificial UV-B (280-315 nm) in the presence or absence of visible light (photosynthetically active radiation) on growth, survival, 14CO2 uptake and ribulose 1,5-bisphosphate carboxylase (RuBISCO) activity were studied in the N2-fixing cyanobacterium Anabaena BT2. We tested the hypothesis whether or not visible radiation offers any protection against UV-B-induced deleterious effects on growth and photosynthesis in Anabaena BT2. Attempts were also made to determine the irradiances of UV-B where inhibitory effects could be mitigated by simultaneous irradiation with visible light. Exposure of cultures to 0.2 W m(-2) or higher irradiance of UV-B caused inhibition of growth and survival and growth ceased above 1.0 W m(-2). 14CO uptake and RuBISCO activity were found to be more sensitive to UV-B and around 60% reduction in 14CO2 uptake and RuBISCO activity occurred after exposure of cultures to 0.4 W m(-2) for 1 h. However, growth, 14CO2 uptake and RuBISCO activity were nearly normal when UV-B (0.4 W m(-2)) and visible light (14.4 W m(-2)) were given simultaneously. Blue radiation (450 nm) was found to be the most effective in photoreactivation against UV-B, better than UV-A or any other light wavelength band. Our results demonstrate that the studied cyanobacterium possesses active photoreactivation mechanism(s) against UV-B-mediated damage which in turn probably allow survival under natural conditions in spite of being continuously exposed to the UV-B component present in the solar radiation. Continued growth of many algae and cyanobacteria in the presence of intense solar UV-B radiation under natural conditions seems to be due to the active role of photoreactivation.


Assuntos
Anabaena/efeitos da radiação , Luz , Fixação de Nitrogênio , Raios Ultravioleta , Anabaena/crescimento & desenvolvimento , Anabaena/fisiologia , Dióxido de Carbono/metabolismo , Fotossíntese
17.
Biochem Biophys Res Commun ; 318(4): 1025-30, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15147976

RESUMO

Impact of ultraviolet-B radiation in causing the damages to the DNA of the cyanobacterium, Anabaena strain BT2 has been investigated. Exposure of genomic DNA (in vitro) to UV-B radiation for 1 h did not cause any shift in the absorption peak (lambda(max)) but more than 30% increase in absorbance was noticed in comparison to untreated control DNA (no exposure to UV-B). This increase in absorbance in a way may be comparable to typical hypochromic effect but there was no decrease in absorbance following transfer of UV-B-treated DNA to fluorescent light or in the dark. That the damaging effect of UV-B radiation on native structure of DNA is indeed real was also evident from the PCR-based assay such as RAPD, rDNA amplification, and ARDRA. Template activity of UV-B-treated genomic DNA was drastically inhibited, there was no amplification in RAPD assay after prior exposure of DNA to UV-B for 60 min. Only one band of approximately 400 bp was observed even after 60 min of exposure which suggests that certain segment of DNA strand is resistant to UV-B effects. Similar to the effects on RAPD profile, amplification of rDNA was significantly inhibited following exposure of genomic DNA to UV-B. Our findings clearly demonstrate that UV-B does affect the DNA of cyanobacteria and the killings of these microbes might be due to the irreversible damages caused to DNA by this high energy radiation. It is felt that PCR assay may be conveniently used for screening the damages caused to DNA by UV-B radiation in cyanobacteria and other microorganisms.


Assuntos
Cianobactérias/efeitos da radiação , Dano ao DNA , DNA Bacteriano/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Anabaena/genética , Anabaena/crescimento & desenvolvimento , Anabaena/efeitos da radiação , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Genoma Bacteriano , Técnica de Amplificação ao Acaso de DNA Polimórfico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa