Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 754
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(7): e2322375121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315835

RESUMO

Protein S-acyl transferases (PATs) catalyze S-acylation, a reversible post-translational modification critical for membrane association, trafficking, and stability of substrate proteins. Many plant proteins are potentially S-acylated but few have corresponding PATs identified. By using genomic editing, confocal imaging, pharmacological, genetic, and biochemical assays, we demonstrate that three Arabidopsis class C PATs positively regulate BR signaling through S-acylation of BRASSINOSTEROID-SIGNALING KINASE1 (BSK1). PAT19, PAT20, and PAT22 associate with the plasma membrane (PM) and the trans-Golgi network/early endosome (TGN/EE). Functional loss of all three genes results in a plethora of defects, indicative of reduced BR signaling and rescued by enhanced BR signaling. PAT19, PAT20, and PAT22 interact with BSK1 and are critical for the S-acylation of BSK1, and for BR signaling. The PM abundance of BSK1 was reduced by functional loss of PAT19, PAT20, and PAT22 whereas abolished by its S-acylation-deficient point mutations, suggesting a key role of S-acylation in its PM targeting. Finally, an active BR analog induces vacuolar trafficking and degradation of PAT19, PAT20, or PAT22, suggesting that the S-acylation of BSK1 by the three PATs serves as a negative feedback module in BR signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinases , Acilação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Transferases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
2.
PLoS Genet ; 19(12): e1011084, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38157491

RESUMO

mDia formin proteins regulate the dynamics and organization of the cytoskeleton through their linear actin nucleation and polymerization activities. We previously showed that mDia1 deficiency leads to aberrant innate immune activation and induces myelodysplasia in a mouse model, and mDia2 regulates enucleation and cytokinesis of erythroblasts and the engraftment of hematopoietic stem and progenitor cells (HSPCs). However, whether and how mDia formins interplay and regulate hematopoiesis under physiological and stress conditions remains unknown. Here, we found that both mDia1 and mDia2 are required for HSPC regeneration under stress, such as serial plating, aging, and reconstitution after myeloid ablation. We showed that mDia1 and mDia2 form hetero-oligomers through the interactions between mDia1 GBD-DID and mDia2 DAD domains. Double knockout of mDia1 and mDia2 in hematopoietic cells synergistically impaired the filamentous actin network and serum response factor-involved transcriptional signaling, which led to declined HSPCs, severe anemia, and significant mortality in neonates and newborn mice. Our data demonstrate the potential roles of mDia hetero-oligomerization and their non-rodent functions in the regulation of HSPCs activity and orchestration of hematopoiesis.


Assuntos
Actinas , Proteínas de Transporte , Camundongos , Animais , Forminas/genética , Forminas/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citoesqueleto de Actina/metabolismo , Microtúbulos/metabolismo
3.
Am J Pathol ; 194(10): 1986-1996, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39069167

RESUMO

Phosphoinositide 3-kinase (PI3K)-AKT and androgen receptor (AR) pathways are commonly activated in prostate cancers. Their reciprocal regulation makes advanced prostate cancers difficult to treat. The current study shows that pleckstrin-2 (PLEK2), a proto-oncoprotein involved in the activation and stabilization of AKT, connects these two pathways. Genetic evidence provided herein suggests that Plek2 deficiency largely reverted tumorigenesis in Pten prostate-specific knockout mice and that overexpression of PLEK2 promoted the proliferation and colony formation of prostate cancer cells in vitro. In addition, PLEK2 was negatively regulated by AR, AR transcriptionally repressed PLEK2 through binding to the PLEK2 promoter region, and overexpression of AR reduced PLEK2 expression, which inactivated AKT. Conversely, knockdown of AR in prostate cancer cells increased PLEK2 expression and activated the AKT pathway. This reciprocal inhibitory loop can be pharmacologically targeted using the PLEK2 inhibitor. PLEK2 inhibitor dose-dependently inhibited prostate cancer cell proliferation with the inactivation of AKT. Overall, the current study uncovered a crucial role of PLEK2 in prostate cancer proliferation and provided the rationale for targeting PLEK2 to treat prostate cancers.


Assuntos
Proliferação de Células , Proteínas de Membrana , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Receptores Androgênicos , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Camundongos Knockout , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
4.
Blood ; 142(1): 106-118, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37053547

RESUMO

Inflammation leads to functional iron deficiency by increasing the expression of the hepatic iron regulatory peptide hepcidin. Inflammation also stimulates fibroblast growth factor 23 (FGF23) production by increasing both Fgf23 transcription and FGF23 cleavage, which paradoxically leads to excess in C-terminal FGF23 peptides (Cter-FGF23), rather than intact FGF23 (iFGF23) hormone. We determined that the major source of Cter-FGF23 is osteocytes and investigated whether Cter-FGF23 peptides play a direct role in the regulation of hepcidin and iron metabolism in response to acute inflammation. Mice harboring an osteocyte-specific deletion of Fgf23 showed a ∼90% reduction in Cter-FGF23 levels during acute inflammation. Reduction in Cter-FGF23 led to a further decrease in circulating iron in inflamed mice owing to excessive hepcidin production. We observed similar results in mice showing impaired FGF23 cleavage owing to osteocyte-specific deletion of Furin. We next showed that Cter-FGF23 peptides bind members of the bone morphogenetic protein (BMP) family, BMP2 and BMP9, which are established inducers of hepcidin. Coadministration of Cter-FGF23 and BMP2 or BMP9 prevented the increase in Hamp messenger RNA and circulating hepcidin levels induced by BMP2/9, resulting in normal serum iron levels. Finally, injection of Cter-FGF23 in inflamed Fgf23KO mice and genetic overexpression of Cter-Fgf23 in wild type mice also resulted in lower hepcidin and higher circulating iron levels. In conclusion, during inflammation, bone is the major source of Cter-FGF23 secretion, and independently of iFGF23, Cter-FGF23 reduces BMP-induced hepcidin secretion in the liver.


Assuntos
Fatores de Crescimento de Fibroblastos , Hepcidinas , Ferro , Animais , Camundongos , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Inflamação/genética , Peptídeos
5.
Blood ; 141(3): 244-259, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36206490

RESUMO

Acute myeloid leukemia (AML) is an aggressive blood cancer with poor prognosis. FMS-like tyrosine kinase receptor-3 (FLT3) is one of the major oncogenic receptor tyrosine kinases aberrantly activated in AML. Although protein tyrosine phosphatase PRL2 is highly expressed in some subtypes of AML compared with normal human hematopoietic stem and progenitor cells, the mechanisms by which PRL2 promotes leukemogenesis are largely unknown. We discovered that genetic and pharmacological inhibition of PRL2 significantly reduce the burden of FLT3-internal tandem duplications-driven leukemia and extend the survival of leukemic mice. Furthermore, we found that PRL2 enhances oncogenic FLT3 signaling in leukemia cells, promoting their proliferation and survival. Mechanistically, PRL2 dephosphorylates the E3 ubiquitin ligase CBL at tyrosine 371 and attenuates CBL-mediated ubiquitination and degradation of FLT3, leading to enhanced FLT3 signaling in leukemia cells. Thus, our study reveals that PRL2 enhances oncogenic FLT3 signaling in leukemia cells through dephosphorylation of CBL and will likely establish PRL2 as a novel druggable target for AML.


Assuntos
Leucemia Mieloide Aguda , Ubiquitina-Proteína Ligases , Humanos , Animais , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Transdução de Sinais/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Mutação
6.
PLoS Biol ; 20(10): e3001811, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215313

RESUMO

Nuclear envelope membrane proteins (NEMPs) are a conserved family of nuclear envelope (NE) proteins that reside within the inner nuclear membrane (INM). Even though Nemp1 knockout (KO) mice are overtly normal, they display a pronounced splenomegaly. This phenotype and recent reports describing a requirement for NE openings during erythroblasts terminal maturation led us to examine a potential role for Nemp1 in erythropoiesis. Here, we report that Nemp1 KO mice show peripheral blood defects, anemia in neonates, ineffective erythropoiesis, splenomegaly, and stress erythropoiesis. The erythroid lineage of Nemp1 KO mice is overrepresented until the pronounced apoptosis of polychromatophilic erythroblasts. We show that NEMP1 localizes to the NE of erythroblasts and their progenitors. Mechanistically, we discovered that NEMP1 accumulates into aggregates that localize near or at the edge of NE openings and Nemp1 deficiency leads to a marked decrease of both NE openings and ensuing enucleation. Together, our results for the first time demonstrate that NEMP1 is essential for NE openings and erythropoietic maturation in vivo and provide the first mouse model of defective erythropoiesis directly linked to the loss of an INM protein.


Assuntos
Membrana Nuclear , Esplenomegalia , Camundongos , Animais , Eritroblastos/metabolismo , Núcleo Celular/metabolismo , Eritropoese/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout
7.
Chem Soc Rev ; 53(12): 6600-6624, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38817197

RESUMO

Dearomatization has emerged as a powerful tool for rapid construction of 3D molecular architectures from simple, abundant, and planar (hetero)arenes. The field has evolved beyond simple dearomatization driven by new synthetic technology development. With the renaissance of photocatalysis and expansion of the activation mode, the last few years have witnessed impressive developments in innovative photochemical dearomatization methodologies, enabling skeletal modifications of dearomatized structures. They offer truly efficient and useful tools for facile construction of highly complex structures, which are viable for natural product synthesis and drug discovery. In this review, we aim to provide a mechanistically insightful overview on these innovations based on the degree of skeletal alteration, categorized into dearomative functionalization and skeletal editing, and to highlight their synthetic utilities.

8.
Biochem Biophys Res Commun ; 719: 150027, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-38749089

RESUMO

Aging is a complex, degenerative process associated with various metabolic abnormalities. Ginsenosides (GS) is the main active components of Panax ginseng, which has anti-aging effects and improves metabolism. However, the anti-aging effect and the mechanism of GS in middle-aged mice has not been elucidated. In this study, GS after 3-month treatment significantly improved the grip strength, fatigue resistance, cognitive indices, and cardiac function of 15-month-old mice. Meanwhile, GS treatment reduced the fat content and obviously inhibited histone H2AX phosphorylation at Ser 139 (γ-H2AX), a marker of DNA damage in major organs, especially in the heart and liver. Further, the correlation analysis of serum metabolomics combined with aging phenotype suggested that myo-inositol (MI) upregulated by GS was positively correlated with left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), the main indicators of cardiac function. More importantly, liver tissue metabolomic analysis showed that GS increased MI content by promoting the synthesis pathway from phosphatidylcholine (PC) to MI for the inhibition of liver aging. Finally, we proved that MI reduced the percentage of senescence-associated ß-galactosidase staining, γ-H2AX immunofluorescence staining, p21 expression, and the production of reactive oxygen species in H2O2-induced cardiomyocytes. These results suggest that GS can enhance multiple organ functions, especially cardiac function for promoting the healthspan of aging mice, which is mediated by the conversion of PC to MI in the liver and the increase of MI level in the serum. Our study might provide new insights into the potential mechanisms of ginsenosides for prolonging the healthspan of natural aging mice.


Assuntos
Envelhecimento , Ginsenosídeos , Inositol , Metabolômica , Panax , Fosfatidilcolinas , Animais , Panax/química , Ginsenosídeos/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Fosfatidilcolinas/metabolismo , Camundongos , Masculino , Inositol/farmacologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL
9.
Br J Surg ; 111(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215239

RESUMO

BACKGROUND: The aim of this multicentre cohort study was to compare the long-term oncological outcomes of robotic gastrectomy (RG) and laparoscopic gastrectomy (LG) for patients with gastric cancer. METHODS: Patients with gastric cancer who underwent radical gastrectomy by robotic or laparoscopic approaches from 1 March 2010 to 31 December 2018 at 10 high-volume centres in China were selected from institutional databases. Patients receiving RG were matched 1 : 1 by propensity score with patients undergoing LG. The primary outcome was 3-year disease-free survival. Secondary outcomes were overall survival and disease recurrence. RESULTS: Some 2055 patients who underwent RG and 4309 patients who had LG were included. The propensity score-matched cohort comprised 2026 RGs and 2026 LGs. Median follow-up was 41 (i.q.r. 39-58) months for the RG group and 39 (38-56) months for the LG group. The 3-year disease-free survival rates were 80.8% in the RG group and 79.5% in the LG group (log rank P = 0.240; HR 0.92, 95% c.i. 0.80 to 1.06; P = 0.242). Three-year OS rates were 83.9 and 81.8% respectively (log rank P = 0.068; HR 0.87, 0.75 to 1.01; P = 0.068) and the cumulative incidence of recurrence over 3 years was 19.3% versus 20.8% (HR 0.95, 0.88 to 1.03; P = 0.219), with no difference between groups. CONCLUSION: RG and LG in patients with gastric cancer are associated with comparable disease-free and overall survival.


Assuntos
Laparoscopia , Levamisol/análogos & derivados , Procedimentos Cirúrgicos Robóticos , Neoplasias Gástricas , Humanos , Resultado do Tratamento , Estudos de Coortes , Neoplasias Gástricas/cirurgia , Gastrectomia , Pontuação de Propensão , Estudos Retrospectivos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgia
10.
Arch Biochem Biophys ; 753: 109893, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309681

RESUMO

Adipose tissue-derived stem cells (ADSCs) are a kind of stem cells with multi-directional differentiation potential, which mainly restore tissue repair function and promote cell regeneration. It can be directionally differentiated into Schwann-like cells to promote the repair of peripheral nerve injury. Glial cell line-derived neurotrophic factor (GDNF) plays an important role in the repair of nerve injury, but the underlying mechanism remains unclear, which seriously limits its further application.The study aimed to identify the molecular mechanism by which overexpression of glial cell line-derived neurotrophic factor (GDNF) facilitates the differentiation of ADSCs into Schwann cells, enhancing nerve regeneration after injury. In vitro, ADSCs overexpressing GDNF for 48 h exhibited changes in their morphology, with 80% of the cells having two or more prominences. Compared with that of ADSCs, GDNF-ADSCs exhibited increased expression of the Schwann cell marker S100, nerve damage repair-related factors.ADSC cells in normal culture and ADSC cells were overexpressing GDNF(GDNF-ADSCs) were analysed using TMT-Based Proteomic Analysis and revealed a significantly higher expression of MTA1 in GDNF-ADSCs than in control ADSCs. Hes1 expression was significantly higher in GDNF-ADSCs than in ADSCs and decreased by MTA1 silencing, along with a simultaneous decrease in the expression of S100 and nerve damage repair factors. These findings indicate that GDNF promotes the differentiation of ADSCs into Schwann cells and induces factors that accelerate peripheral nerve damage repair.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteômica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Regeneração Nervosa , Tecido Adiposo , Diferenciação Celular , Células de Schwann
11.
Langmuir ; 40(24): 12744-12754, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38838080

RESUMO

Appropriate capillary effects are beneficial for controlling the wet powder performance and agglomerate formation. As water content rises, the funicular regime supplants the pendular regime as the predominant state in wet granular media. The displacement of grains leading to the stretching of funicular liquid bridges until rupture is an interesting and common phenomenon. Utilizing Surface Evolver software (an energy minimization approach), this work develops an efficient and accurate numerical model to describe liquid interactions among three spherical grains. The effects of liquid volume, contact angle, grain size ratio, grain-pair gap, and separation distance on the capillary forces and rupture distances are investigated. Notably, we present a modified closed-form equation for predicting the rupture distance of funicular bridges between three grains, which reflects the coupled effects of the contact angle, grain size, and liquid volume on rupture distance. This present study provides insights for incorporating capillary effects into mechanical models relying on microassembly composed of several grains in bidisperse particulate systems. Additionally, the numerical findings confirm some findings regarding the splitting of funicular bridges.

12.
Eur J Haematol ; 112(6): 964-974, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38388794

RESUMO

OBJECTIVES: This study assesses the clinical significance of additional cytogenetic abnormalities (ACAs) and/or the deletion of 3'CBFB (3'CBFBdel) resulting in unbalanced CBFB::MYH11 fusion in acute myeloid leukemia (AML) with inv (16)/t(16;16)/CBFB::MYH11. METHODS: We retrospectively evaluated the clinicopathologic features of 47 adult de novo AML with inv (16)/t(16;16)/CBFB::MYH11 fusion. There were 44 balanced and 3 unbalanced CBFB::MYH11 fusions. Given the low frequency of unbalanced cases, the latter group was combined with 19 published cases (N = 22) for statistic and meta-analysis. RESULTS: Both balanced and unbalanced cases were characterized by frequent ACAs (56.5% and 72.7%, respectively), with +8, +22, and del(7q) as the most frequent abnormalities. The unbalanced group tends to be younger individuals (p = .04) and is associated with a lower remission rate (p = .02), although the median overall survival (OS) was not statistically different (p = .2868). In the balanced group, "ACA" subgroup had higher mortality (p = .013) and shorter OS (p = .011), and patients with relapsed disease had a significantly shorter OS (p = .0011). Cox multivariate regression analysis confirmed that ACAs and history of disease relapse are independent risk factors, irrespective of disease relapse status. In the combined cohort, cases with ACAs had shorter OS than those with "Sole" abnormality (p = .0109). CONCLUSIONS: ACAs are independent high-risk factors in adult AML with inv (16)/t(16;16)/CBFB::MYH11 fusion and should be integrated for risk stratification in this disease. Larger studies are needed to assess the clinical significance of the unbalanced CBFB::MYH11 fusion resulting from the 3'CBFBdel.


Assuntos
Aberrações Cromossômicas , Inversão Cromossômica , Cromossomos Humanos Par 16 , Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/diagnóstico , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , Idoso , Cromossomos Humanos Par 16/genética , Prognóstico , Estudos Retrospectivos , Adulto Jovem , Subunidade beta de Fator de Ligação ao Core/genética , Adolescente , Idoso de 80 Anos ou mais , Translocação Genética , Cadeias Pesadas de Miosina/genética
13.
Purinergic Signal ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470513

RESUMO

Studies have confirmed that P2 purinergic receptors (P2X receptors and P2Y receptors) expressed in gastric cancer (GC) cells and GC tissues and correlates with their function. Endogenous nucleotides including ATP, ADP, UTP, and UDP, as P2 purinergic receptors activators, participate in P2 purinergic signal transduction pathway. These activated P2 purinergic receptors regulate the progression of GC mainly by mediating ion channels and intracellular signal cascades. It is worth noting that there is a difference in the expression of P2 purinergic receptors in GC, which may play different roles in the progression of GC as a tumor promoting factor or a tumor suppressor factor. Among them, P2 × 7, P2Y2 and P2Y6 receptors have certain clinical significance in patients with GC and may be used as biological molecular markers for the prediction of patients with GC. Therefore, in this paper, we discuss the functional role of nucleotide / P2 purinergic receptors signal axis in regulating the progression of GC and that these P2 purinergic receptors may be used as potential molecular targets for the prevention and treatment of GC.

14.
Exp Brain Res ; 242(10): 2391-2404, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39136723

RESUMO

This study aimed to utilize the nonnegative matrix factorization (NNMF) algorithm for muscle synergy analysis, extracting synergy structures and muscle weightings and mining biomarkers reflecting changes in muscle fatigue from these synergy structures. A leg press exercise to induce fatigue was performed by 11 participants. Surface electromyography (sEMG) data from seven muscles, electrocardiography (ECG) data, Borg CR-10 scale scores, and the z-axis acceleration of the weight block were simultaneously collected. Three indices were derived from the synergy structures: activation phase difference, coactivation area, and coactivation time. The indicators were further validated for single-leg landing. Differences in heart rate (HR) and heart rate variability (HRV) were observed across different fatigue levels, with varying degrees of disparity. The median frequency (MDF) exhibited a consistent decline in the primary working muscle groups. Significant differences were noted in activation phase difference, coactivation area, and coactivation time before and after fatigue onset. Moreover, a significant correlation was found between the activation phase difference and the coactivation area with fatigue intensity. The further application of single-leg landing demonstrated the effectiveness of the coactivation area. These indices can serve as biomarkers reflecting simultaneous alterations in the central nervous system and muscle activity post-exertion.


Assuntos
Eletromiografia , Frequência Cardíaca , Fadiga Muscular , Músculo Esquelético , Humanos , Masculino , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto Jovem , Adulto , Frequência Cardíaca/fisiologia , Eletrocardiografia , Feminino , Algoritmos
15.
BMC Vet Res ; 20(1): 103, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491518

RESUMO

BACKGROUND: Salmonella enterica subspecies enterica serovar abortus equi (S. abortus equi) is one of the main pathogens that causes abortion in pregnant horses and donkeys, which was highly infectious and greatly restricts the healthy development of the horse industry. OBJECTIVES: In order to investigate the prevalence and biological characteristics of S. abortus equi in different regions and breeds of horses in Xinjiang. METHODS: This study conducted ELISA detection of S. abortus equi antibodies on serum samples of 971 horses collected from three large-scale horse farms and five free-range horse farms in Yili Prefecture and Bayingol Mongolian Autonomous Prefecture of Xinjiang from 2020 to 2023. On this basis, bacterial isolation, culture, identification, and drug sensitivity tests were conducted on 42 samples of aborted foal tissues and 23 mare vaginal swabs. RESULTS: The results showed that the positive rate of S. abortus equi antibody was as high as 20.91% in 971 horse serum samples. Among them, the positive rate in the Ili region (29.09%) was significantly higher than that in the Bayingole region (11.24%), and the positive rate in mares (22.45%) was higher than that in stallions (14.05%). In terms of horse breeds, the positive rates of self-propagating thoroughbred horses, half-bred horses, Ili horses and Yanqi horses were 43.22%, 28.81%, 14.72% and 11.24% respectively. In addition, S. abortus equi was more susceptible to juvenile and elderly horses, with positive rates of 70.00%and 41.86%, respectively, both of which were significantly higher than young (10.97%) and adult (19.79%) horses. Further, 9 strains of S. abortus equi were obtained through bacterial isolation, culture and identification, which were resistant to five antibiotics (Clarithromycin, Clindamycin, penicillin, Sulfamethoxazole and Rifampicin), and sensitive to 13 antimicrobial agents (Amoxicillin, Ciprofloxacin and Gentamicin, et al.). CONCLUSION: There was a high infection rate of S. abortus equi in Ili Prefecture and self-propagating thoroughbred horses, and juvenile or old mares were more susceptible, which will provide scientific basis for the prevention of S. abortus equi infection in different regions and breeds of horses in Xinjiang.


Assuntos
Aborto Animal , Doenças dos Cavalos , Gravidez , Cavalos , Animais , Feminino , Masculino , Aborto Animal/epidemiologia , Equidae , Ensaio de Imunoadsorção Enzimática/veterinária , Salmonella , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/microbiologia
16.
PLoS Genet ; 17(4): e1009505, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33886546

RESUMO

The development of male and female gametophytes is a pre-requisite for successful reproduction of angiosperms. Factors mediating vesicular trafficking are among the key regulators controlling gametophytic development. Fusion between vesicles and target membranes requires the assembly of a fusogenic soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) complex, whose disassembly in turn ensures the recycle of individual SNARE components. The disassembly of post-fusion SNARE complexes is controlled by the AAA+ ATPase N-ethylmaleimide-sensitive factor (Sec18/NSF) and soluble NSF attachment protein (Sec17/α-SNAP) in yeast and metazoans. Although non-canonical α-SNAPs have been functionally characterized in soybeans, the biological function of canonical α-SNAPs has yet to be demonstrated in plants. We report here that the canonical α-SNAP in Arabidopsis is essential for male and female gametophytic development. Functional loss of the canonical α-SNAP in Arabidopsis results in gametophytic lethality by arresting the first mitosis during gametogenesis. We further show that Arabidopsis α-SNAP encodes two isoforms due to alternative splicing. Both isoforms interact with the Arabidopsis homolog of NSF whereas have distinct subcellular localizations. The presence of similar alternative splicing of human α-SNAP indicates that functional distinction of two α-SNAP isoforms is evolutionarily conserved.


Assuntos
Arabidopsis/genética , Gametogênese/genética , Desenvolvimento Vegetal/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Processamento Alternativo/genética , Arabidopsis/crescimento & desenvolvimento , Células Germinativas Vegetais/crescimento & desenvolvimento , Mitose/genética , Proteínas Sensíveis a N-Etilmaleimida/genética , Isoformas de Proteínas/genética
17.
Biomed Chromatogr ; 38(5): e5840, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402901

RESUMO

The incidence of colibacillosis in poultry is on the rise, significantly affecting the chicken industry. Ceftiofur sodium (CS) is frequently employed to treat this disease, resulting in lipopolysaccharide (LPS) buildup. Processing plays a vital role in traditional Chinese veterinary medicine. The potential intervention in liver injury by polysaccharides from the differently processed products of Angelica sinensis (PDPPAS) induced by combined CS and LPS remains unclear. This study aims to investigate the protective effect of PDPPAS on chicken liver injury caused by CS combined with LPS buildup and further identify the polysaccharides with the highest hepatoprotective activity in chickens. Furthermore, the study elucidates polysaccharides' intervention mechanism using tandem mass tag (TMT) proteomics and multiple reaction monitoring (MRM) methods. A total of 190 1-day-old layer chickens were randomly assigned into 12 groups, of which 14 chickens were in the control group and 16 in other groups, for a 10-day trial. The screening results showed that charred A. sinensis polysaccharide (CASP) had the most effective and the best hepatoprotective effect at 48 h. TMT proteomics and MRM validation results demonstrated that the intervention mechanism of the CASP high-dose (CASPH) intervention group was closely related to the protein expressions of FCER2, TBXAS1, CD34, AGXT, GCAT, COX7A2L, and CYP2AC1. Conclusively, the intervention mechanism of CASPH had multitarget, multicenter regulatory features.


Assuntos
Angelica sinensis , Galinhas , Fígado , Polissacarídeos , Proteômica , Espectrometria de Massas em Tandem , Animais , Angelica sinensis/química , Proteômica/métodos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/análise , Espectrometria de Massas em Tandem/métodos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteoma/análise , Proteoma/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
18.
Chaos ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39213016

RESUMO

Networks are designed to ensure proper functioning and sustained operability of the underlying systems. However, disruptions are generally unavoidable. Internal interactions and external environmental effects can lead to the removal of nodes or edges, resulting in unexpected collective behavior. For instance, a single failing node or removed edge may trigger a cascading failure in an electric power grid. This Focus Issue delves into recent advances in understanding the impacts of disruptions on networks and their system dynamics. The central theme is the disruption of networks and their dynamics from the perspectives of both data-driven analysis as well as modeling. Topics covered include disruptions in the dynamics of empirical systems such as nuclear reaction networks, infrastructure networks, social networks, epidemics, brain dynamics, and physiology. Emphasis is placed on various phenomena in collective behavior, including critical phase transitions, irregular collective dynamics, complex patterns of synchrony and asynchrony, chimera states, and anomalous oscillations. The tools used for these studies include control theory, diffusion processes, stochastic processes, and network theory. This collection offers an exciting addition to the evolving landscape of network disruption research.

19.
Chaos ; 34(10)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39441891

RESUMO

This Focus Issue covers recent developments in the broad areas of nonlinear dynamics, synchronization, and emergent behavior in dynamical networks. It targets current progress on issues such as time series analysis and data-driven modeling from real data such as climate, brain, and social dynamics. Predicting and detecting early warning signals of extreme climate conditions, epileptic seizures, or other catastrophic conditions are the primary tasks from real or experimental data. Exploring machine-based learning from real data for the purpose of modeling and prediction is an emerging area. Application of the evolutionary game theory in biological systems (eco-evolutionary game theory) is a developing direction for future research for the purpose of understanding the interactions between species. Recent progress of research on bifurcations, time series analysis, control, and time-delay systems is also discussed.


Assuntos
Dinâmica não Linear , Humanos , Teoria dos Jogos , Animais
20.
Int J Mol Sci ; 25(19)2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39409135

RESUMO

Pregnant women and children are vulnerable to vitamin A deficiency (VAD), which is often compounded by concurrent deficiencies in other micronutrients, particularly iron and zinc, in developing countries. The study investigated the effects of early-life VAD on motor and cognitive development and trace mineral status in a mouse model. C57BL/6J dams were fed either a vitamin A-adequate (VR) or -deficient (VD) diet across two consecutive gestations and lactations. Offspring from both gestations (G1 and G2) continued the same diets until 6 or 9 weeks of age. Behavioral assays were conducted to evaluate motor coordination, grip strength, spatial cognition, and anxiety. Hepatic trace minerals were analyzed. A VD diet depleted hepatic retinoids and reduced plasma retinol across all ages and gestations. Retracted rear legs and abnormal gait were the most common clinical manifestations observed in VD offspring from both gestations at 9 weeks. Poor performance on the Rotarod test further confirmed their motor dysfunction. VAD didn't affect hemoglobin levels and had no consistent effect on hepatic trace mineral concentrations. These findings highlight the critical role of vitamin A in motor development. There was no clear evidence that VAD alters the risk of iron deficiency anemia or trace minerals.


Assuntos
Camundongos Endogâmicos C57BL , Destreza Motora , Oligoelementos , Deficiência de Vitamina A , Animais , Feminino , Camundongos , Gravidez , Deficiência de Vitamina A/metabolismo , Deficiência de Vitamina A/complicações , Oligoelementos/deficiência , Oligoelementos/metabolismo , Oligoelementos/sangue , Masculino , Fígado/metabolismo , Vitamina A/metabolismo , Vitamina A/sangue , Cognição , Modelos Animais de Doenças , Comportamento Animal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa