Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(8): 2312-2326, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38548388

RESUMO

Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue, we systematically performed linkage and association mapping for eight carotenoid traits using six recombinant inbred line (RIL) populations. Single linkage mapping (SLM) and joint linkage mapping (JLM) identified 77 unique additive QTLs and 104 pairs of epistatic QTLs. Among these QTLs, we identified 22 overlapping hotspots of additive and epistatic loci, highlighting the important contributions of some QTLs to carotenoid levels through additive or epistatic mechanisms. A genome-wide association study based on all RILs detected 244 candidate genes significantly associated with carotenoid traits, 23 of which were annotated as carotenoid pathway genes. Effect comparisons suggested that a small number of loci linked to pathway genes have substantial effects on carotenoid variation in our tested populations, but many loci not associated with pathway genes also make important contributions to carotenoid variation. We identified ZmPTOX as the causal gene for a QTL hotspot (Q10/JLM10/GWAS019); this gene encodes a putative plastid terminal oxidase that produces plastoquinone-9 used by two enzymes in the carotenoid pathway. Natural variants in the promoter and second exon of ZmPTOX were found to alter carotenoid levels. This comprehensive assessment of the genetic mechanisms underlying carotenoid variation establishes a foundation for rewiring carotenoid metabolism and accumulation for efficient carotenoid biofortification.


Assuntos
Carotenoides , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Zea mays , Carotenoides/metabolismo , Zea mays/genética , Zea mays/metabolismo , Locos de Características Quantitativas/genética , Sementes/genética , Sementes/metabolismo , Ligação Genética , Epistasia Genética
2.
Science ; 375(6587): eabg7985, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35324310

RESUMO

A better understanding of the extent of convergent selection among crops could greatly improve breeding programs. We found that the quantitative trait locus KRN2 in maize and its rice ortholog, OsKRN2, experienced convergent selection. These orthologs encode WD40 proteins and interact with a gene of unknown function, DUF1644, to negatively regulate grain number in both crops. Knockout of KRN2 in maize or OsKRN2 in rice increased grain yield by ~10% and ~8%, respectively, with no apparent trade-offs in other agronomic traits. Furthermore, genome-wide scans identified 490 pairs of orthologous genes that underwent convergent selection during maize and rice evolution, and these were enriched for two shared molecular pathways. KRN2, together with other convergently selected genes, provides an excellent target for future crop improvement.


Assuntos
Grão Comestível , Oryza , Proteínas de Plantas/genética , Seleção Genética , Repetições WD40 , Zea mays , Grão Comestível/genética , Genes de Plantas , Oryza/genética , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/classificação , Repetições WD40/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa