Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 932: 173098, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729364

RESUMO

Elucidating the mechanisms underlying microbial biomass and extracellular enzyme activity responses to the seasonal precipitation regime during foliar litter decomposition is highly important for understanding the material cycle of forest ecosystems in the context of global climate change; however, the specific underlying mechanisms remain unclear. Hence, a precipitation manipulation experiment involving a control (CK) and treatments with decreased precipitation in the dry season and extremely increased precipitation in the wet season (IE) and decreased precipitation in the dry season and proportionally increased precipitation in the wet season (IP) was conducted in a subtropical evergreen broad-leaved forest in China from October 2020 to October 2021. The moisture, microbial biomass, and extracellular enzyme activities of foliar litter from two dominant shrub species, Phyllostachys violascens and Alangium chinense, were measured at six stages during the dry and wet seasons. The results showed that (1) both IE and IP significantly decreased the microbial biomass carbon and microbial biomass nitrogen content and the activities of ß-1,4-glucosidase, ß-1,4-N-acetylglucosaminidase, acid phosphatase and cellulase in the dry season, while the opposite effects were observed in the wet season. (2) Compared with those of IE, the effects of IP on foliar litter microbial biomass and extracellular enzyme activity were more significant. (3) The results from the partial least squares model indicated that extracellular enzyme activity during foliar litter decomposition was strongly controlled by the foliar litter water content, microbial biomass nitrogen, the ratio of total carbon to total phosphorus, foliar litter total carbon, and foliar litter total nitrogen. These results provide an important theoretical basis for elucidating the microbial mechanisms driving litter decomposition in a subtropical forest under global climate change scenarios.


Assuntos
Biomassa , Florestas , Estações do Ano , China , Folhas de Planta , Microbiologia do Solo , Chuva , Mudança Climática
2.
Ying Yong Sheng Tai Xue Bao ; 35(1): 186-194, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511455

RESUMO

Soil N mineralization is a key process of nutrient cycling in ecosystems. The mechanism of the seasonal distribution of precipitation on soil N mineralization remains unclear. We conducted a precipitation manipulation experiment in a subtropical forest in the middle and lower reaches of the Yangtze River in China from 2020 to 2022, with three treatments, including control (CK), decreased precipitation in the dry season with extremely increased precipitation in the wet season (T1), and decreased precipitation in the dry season with proportionally increased precipitation in the wet season (T2). With in situ resin core method, we explored the effect of seasonal distribution of precipitation on soil N mineralization. The results showed that T1 and T2 significantly decreased dry season net nitrification rate by 57.9% and 72.5% and the net N mineralization rate by 82.5% and 89.6%, respectively, and significantly increased wet season net nitrification rate by 64.3% and 79.5% and net N mineralization rate by 64.2% and 81.1%, respectively. Proportionally increased precipitation in the wet season was more conducive to soil N mine-ralization process than extremely increased precipitation in the wet season. Results of the structural equation model showed that change in seasonal distribution of precipitation could significantly affect soil N mineralization processes in the subtropical forest by changing soil water content, ammonium nitrogen, microbial biomass nitrogen, and soil C:N. Our results had important reference for understanding soil nitrogen cycling and other ecological processes, and were conducive to more accurate assessment on the impacts of future changes in seasonal precipitation pattern on subtropical forest ecosystems.


Assuntos
Ecossistema , Nitrogênio , Nitrogênio/análise , Estações do Ano , Solo/química , Microbiologia do Solo , Florestas , China
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa