Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Part Fibre Toxicol ; 14(1): 13, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28431555

RESUMO

BACKGROUND: The wide application of engineered nanoparticles has induced increasing exposure to humans and environment, which led to substantial concerns on their biosafety. Some metal oxides (MOx) have shown severe toxicity in cells and animals, thus safe designs of MOx with reduced hazard potential are desired. Currently, there is a lack of a simple yet effective safe design approach for the toxic MOx. In this study, we determined the key physicochemical properties of MOx that lead to cytotoxicity and explored a safe design approach for toxic MOx by modifying their hazard properties. RESULTS: THP-1 and BEAS-2B cells were exposed to 0-200 µg/mL MOx for 24 h, we found some toxic MOx including CoO, CuO, Ni2O3 and Co3O4, could induce reactive oxygen species (ROS) generation and cell death due to the toxic ion shedding and/or oxidative stress generation from the active surface of MOx internalized into lysosomes. We thus hypothesized that surface passivation could reduce or eliminate the toxicity of MOx. We experimented with a series of surface coating molecules and discovered that ethylenediamine tetra (methylene phosphonic acid) (EDTMP) could form stable hexadentate coordination with MOx. The coating layer can effectively reduce the surface activity of MOx with 85-99% decrease of oxidative potential, and 65-98% decrease of ion shedding. The EDTMP coated MOx show negligible ROS generation and cell death in THP-1 and BEAS-2B cells. The protective effect of EDTMP coating was further validated in mouse lungs exposed to 2 mg/kg MOx by oropharyngeal aspiration. After 40 h exposure, EDTMP coated MOx show significant decreases of neutrophil counts, lactate dehydrogenase (LDH) release, MCP-1, LIX and IL-6 in bronchoalveolar lavage fluid (BALF), compared to uncoated particles. The haematoxylin and eosin (H&E) staining results of lung tissue also show EDTMP coating could significantly reduce the pulmonary inflammation of MOx. CONCLUSIONS: The surface reactivity of MOx including ion shedding and oxidative potential is the dominated physicochemical property that is responsible for the cytotoxicity induced by MOx. EDTMP coating could passivate the surface of MOx, reduce their cytotoxicity and pulmonary hazard effects. This coating would be an effective safe design approach for a broad spectrum of toxic MOx, which will facilitate the safe use of MOx in commercial nanoproducts.


Assuntos
Materiais Revestidos Biocompatíveis/química , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Metais Pesados/toxicidade , Organofosfonatos/química , Animais , Líquido da Lavagem Broncoalveolar/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Exposição por Inalação , Pulmão/metabolismo , Pulmão/patologia , Masculino , Nanopartículas Metálicas/química , Metais Pesados/química , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Óxidos/toxicidade , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
2.
Small ; 12(32): 4404-11, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27383397

RESUMO

Recent studies suggest that the nanorods consisting of europium hydroxide could promote angiogenesis. In this study, it is sought to determine if additional types of nanoparticles are capable of enhancing angiogenesis and in addition, understand the underlying mechanisms. For this reason, a method is employed that combines a high throughput in vitro cell based screen coupled with an in vivo validation using vascular specific green fluorescent protein reporter transgenic zebrafish for examining proangiogenesis activity. After screening multiple types of nanoparticles, it is discovered that four of them, Eu(III) (OH)3 rods (Eu rods), Eu(III) (OH)3 spheres (Eu spheres), Tb(III) (OH)3 rods (Tb rods), and Tb(III) (OH)3 spheres (Tb spheres), are the most effective in promoting angiogenesis. It is also showed that ionic forms of europium nitrate [Eu(NO3 )3 ] (Eu) and terbium nitrate [Tb(NO3 )3 ] (Tb), the two lanthanide elements for these four nanoparticles, are also capable of enhancing angiogenesis. However, this effect is further enhanced by nanoparticle synthesis. Finally, it is demonstrated that reactive oxygen species H2 O2 is a key factor in the process of proangiogenesis by lanthanide elemental nanoparticles.


Assuntos
Elementos da Série dos Lantanídeos/química , Elementos da Série dos Lantanídeos/farmacologia , Nanopartículas/química , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
3.
Environ Sci Technol ; 50(7): 3965-74, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26962674

RESUMO

Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P < 0.05) and altered bacterial communities (e.g., biochar, carbon black, narrow MWCNTs, and graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure.


Assuntos
Bactérias/efeitos dos fármacos , Dessecação , Fungos/efeitos dos fármacos , Grafite/farmacologia , Nanotubos de Carbono/química , Microbiologia do Solo , Aerobiose/efeitos dos fármacos , Bactérias/genética , Biomassa , DNA Bacteriano/genética , Nanotubos de Carbono/ultraestrutura , Polimorfismo de Fragmento de Restrição , Fatores de Tempo
4.
Part Fibre Toxicol ; 13(1): 42, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27527840

RESUMO

BACKGROUND: Although classified as metal oxides, cobalt monoxide (CoO) and lanthanum oxide (La2O3) nanoparticles, as representative transition and rare earth oxides, exhibit distinct material properties that may result in different hazardous potential in the lung. The current study was undertaken to compare the pulmonary effects of aerosolized whole body inhalation of these nanoparticles in mice. RESULTS: Mice were exposed to filtered air (control) and 10 or 30 mg/m(3) of each particle type for 4 days and then examined at 1 h, 1, 7 and 56 days post-exposure. The whole lung burden 1 h after the 4 day inhalation of CoO nanoparticles was 25 % of that for La2O3 nanoparticles. At 56 days post exposure, < 1 % of CoO nanoparticles remained in the lungs; however, 22-50 % of the La2O3 nanoparticles lung burden 1 h post exposure was retained at 56 days post exposure for low and high exposures. Significant accumulation of La2O3 nanoparticles in the tracheobronchial lymph nodes was noted at 56 days post exposure. When exposed to phagolysosomal simulated fluid, La nanoparticles formed urchin-shaped LaPO4 structures, suggesting that retention of this rare earth oxide nanoparticle may be due to complexation of cellular phosphates within lysosomes. CoO nanoparticles caused greater lactate dehydrogenase release in the bronchoalveolar fluid (BALF) compared to La2O3 nanoparticles at 1 day post exposure, while BAL cell differentials indicate that La2O3 nanoparticles generated more inflammatory cell infiltration at all doses and exposure points. Histopathological analysis showed acute inflammatory changes at 1 day after inhalation of either CoO or La2O3 nanoparticles. Only the 30 mg/m(3) La2O3 nanoparticles exposure caused chronic inflammatory changes and minimal fibrosis at day 56 post exposure. This is in agreement with activation of the NRLP3 inflammasome after in vitro exposure of differentiated THP-1 macrophages to La2O3 but not after CoO nanoparticles exposure. CONCLUSION: Taken together, the inhalation studies confirmed the trend of our previous sub-acute aspiration study, which reported that CoO nanoparticles induced more acute pulmonary toxicity, while La2O3 nanoparticles caused chronic inflammatory changes and minimal fibrosis.


Assuntos
Cobalto/toxicidade , Lantânio/toxicidade , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Óxidos/toxicidade , Aerossóis , Animais , Líquido da Lavagem Broncoalveolar , Cobalto/farmacocinética , Citocinas/metabolismo , Exposição por Inalação , Lantânio/farmacocinética , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxidos/farmacocinética
5.
Small ; 11(48): 6467-79, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26528765

RESUMO

The design and development of multifunctional carriers for drug delivery based on hollow nanoparticles (HNPs) have attracted intense interests. Ordinary spherical HNPs are demonstrated to be promising candidates. However, the application of HNPs with special morphologies has rarely been reported. HNPs with sharp horns are expected to own higher endocytosis efficiencies than spherical counterparts. In this work, novel starlike hollow silica nanoparticles (SHNPs) with different sizes are proposed as platforms for the fabrication of redox-triggered multifunctional systems for synergy of gene therapy and chemotherapy. The CD-PGEA gene vectors (consisting of ß-CD cores and ethanolamine-functionalized poly(glycidyl methacrylate) (denoted BUCT-PGEA) arms) are introduced ingeniously onto the surfaces of SHNPs with plentiful disulfide bond-linked adamantine guests. The resulting supramolecular assemblies (SHNP-PGEAs) possess redox-responsive gatekeepers for loaded drugs in the cavities of SHNPs. Meanwhile, they also demonstrate excellent performances to deliver genes. The gene transfection efficiencies, controlled drug release behaviors, and synergistic antitumor effect of hollow silica-based carriers with different morphologies are investigated in detail. Compared with ordinary spherical HNP-based counterparts, SHNP-PGEA carriers with six sharp horns are proven to be superior gene vectors and possess better efficacy for cellular uptake and antitumor effects. The present multifunctional carriers based on SHNPs will have promising applications in drug/gene codelivery and cancer treatment.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Dióxido de Silício/química , Animais , Antineoplásicos/farmacologia , Células COS , Camptotecina/farmacologia , Morte Celular , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Citosina Desaminase/metabolismo , DNA/metabolismo , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Escherichia coli/enzimologia , Flucitosina/farmacologia , Fluorescência , Genes Transgênicos Suicidas , Terapia Genética , Proteínas de Fluorescência Verde/metabolismo , Células Hep G2 , Humanos , Luciferases/genética , Nanopartículas/ultraestrutura , Oxirredução , Tamanho da Partícula , Plasmídeos/metabolismo , Ácidos Polimetacrílicos/química , Eletricidade Estática
6.
Small ; 11(31): 3797-805, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25930061

RESUMO

While it is well known that there are interspecies differences in Ag sensitivity, differences in the cytotoxic responses of mammalian cells to silver nanoparticles (Ag NPs) are also observed. In order to explore these response outcomes, six cell lines, including epithelial cells (Caco-2, NHBE, RLE-6TN, and BEAS-2B) and macrophages (RAW 264.7 and THP-1) of human and rodent origin, are exposed to 20 nm citrate- and PVP-coated Ag NPs with Au cores, as well as 20 nm citrate-coated particles without cores. An MTS assay shows that while Caco-2 and NHBE cells are resistant to particles over a 0.1-50 µg mL(-1) dose range, RAW 264.7, THP-1, RLE-6TN, and BEAS-2B cells are more susceptible. While there are small differences in dissolution rates, there are no major differences in the cytotoxic potential of the different particles. However, differences in anti-oxidant defense and metallothionein expression among different cell types are observed, which can partially explain differential Ag NP sensitivity. So, it is important to consider these differences in understanding the potential heterogeneous effects of nano Ag on mammalian biological systems.


Assuntos
Antioxidantes/química , Nanopartículas Metálicas/química , Metalotioneína/química , Prata/química , Animais , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Meios de Cultura/química , Relação Dose-Resposta a Droga , Células Epiteliais/citologia , Glutationa Transferase/metabolismo , Ouro/química , Humanos , Hidrodinâmica , Macrófagos/metabolismo , Camundongos , Estresse Oxidativo , Ratos
7.
Small ; 11(17): 2087-97, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25581126

RESUMO

The purpose of this paper is to elucidate the key role of NADPH oxidase in NLRP3 inflammasome activation and generation of pulmonary fibrosis by multi-walled carbon nanotubes (MWCNTs). Although it is known that oxidative stress plays a role in pulmonary fibrosis by single-walled CNTs, the role of specific sources of reactive oxygen species, including NADPH oxidase, in inflammasome activation remains to be clarified. In this study, three long aspect ratio (LAR) materials (MWCNTs, single-walled carbon nanotubes, and silver nanowires) are used to compare with spherical carbon black and silver nanoparticles for their ability to trigger oxygen burst activity and NLRP3 assembly. All LAR materials but not spherical nanoparticles induce robust NADPH oxidase activation and respiratory burst activity in THP-1 cells, which are blunted in p22(phox) -deficient cells. The NADPH oxidase is directly involved in lysosomal damage by LAR materials, as demonstrated by decreased cathepsin B release and IL-1ß production in p22(phox) -deficient cells. Reduced respiratory burst activity and inflammasome activation are also observed in bone marrow-derived macrophages from p47(phox) -deficient mice. Moreover, p47(phox) -deficient mice have reduced IL-1ß production and lung collagen deposition in response to MWCNTs. Lung fibrosis is also suppressed by N-acetyl-cysteine in wild-type animals exposed to MWCNTs.


Assuntos
Proteínas de Transporte/metabolismo , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidases/metabolismo , Nanotubos de Carbono/química , Fibrose Pulmonar/patologia , Animais , Catepsina B/metabolismo , Linhagem Celular , Grupo dos Citocromos b/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Pulmão/patologia , Lisossomos/metabolismo , Macrófagos/metabolismo , Masculino , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 1 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Prata/química
8.
Small ; 11(38): 5079-87, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26237579

RESUMO

2D molybdenum disulfide (MoS2 ) has distinct optical and electronic properties compared to aggregated MoS2 , enabling wide use of these materials for electronic and biomedical applications. However, the hazard potential of MoS2 has not been studied extensively. Here, a comprehensive analysis of the pulmonary hazard potential of three aqueous suspended forms of MoS2 -aggregated MoS2 (Agg-MoS2 ), MoS2 exfoliated by lithiation (Lit-MoS2 ), and MoS2 dispersed by Pluronic F87 (PF87-MoS2 )-is presented. No cytotoxicity is detected in THP-1 and BEAS-2B cell lines. However, Agg-MoS2 induces strong proinflammatory and profibrogenic responses in vitro. In contrast, Lit- and PF87-MoS2 have little or no effect. In an acute toxicity study in mice, Agg-MoS2 induces acute lung inflammation, while Lit-MoS2 and PF87-MoS2 have little or no effect. In a subchronic study, there is no evidence of pulmonary fibrosis in response to all forms of MoS2 . These data suggest that exfoliation attenuates the toxicity of Agg-MoS2 , which is an important consideration toward the safety evaluation and use of nanoscale MoS2 materials for industrial and biological applications.


Assuntos
Dissulfetos/toxicidade , Pulmão/patologia , Molibdênio/toxicidade , Testes de Toxicidade/métodos , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Dissulfetos/química , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Molibdênio/química
9.
Environ Sci Technol ; 49(2): 1105-12, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25563693

RESUMO

Metal oxide nanoparticles (MOx NPs) are used for a host of applications, such as electronics, cosmetics, construction, and medicine, and as a result, the safety of these materials to humans and the environment is of considerable interest. A prior study of 24 MOx NPs in mammalian cells revealed that some of these materials show hazard potential. Here, we report the growth inhibitory effects of the same series of MOx NPs in the bacterium Escherichia coli and show that toxicity trends observed in E. coli parallel those seen previously in mammalian cells. Of the 24 materials studied, only ZnO, CuO, CoO, Mn2O3, Co3O4, Ni2O3, and Cr2O3 were found to exert significant growth inhibitory effects; these effects were found to relate to membrane damage and oxidative stress responses in minimal trophic media. A correlation of the toxicological data with physicochemical parameters of MOx NPs revealed that the probability of a MOx NP being toxic increases as the hydration enthalpy becomes less negative and as the conduction band energy approaches those of biological molecules. These observations are consistent with prior results observed in mammalian cells, revealing that mechanisms of toxicity of MOx NPs are consistent across two very different taxa. These results suggest that studying nanotoxicity in E. coli may help to predict toxicity patterns in higher organisms.


Assuntos
Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Anti-Infecciosos/química , Membrana Celular/efeitos dos fármacos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Estresse Oxidativo/efeitos dos fármacos , Óxidos/farmacologia , Modelos de Riscos Proporcionais , Espécies Reativas de Oxigênio/química
10.
Environ Toxicol ; 30(7): 782-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24615891

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) have been classified as possibly carcinogenic to humans and they are an important nanomaterial widely used in pharmaceutical and paint industries. Inhalation is one of the most important routes of exposure in occupational settings. Several experimental models have shown that oxidative stress and inflammation are key mediators of cell damage. In this regard, Nrf2 modulates cytoprotection against oxidative stress and inflammation, however, its role in inflammation induced by TiO2 NPs exposure has been less investigated. The aim of this work was to investigate the role of Nrf2 in the cytokines produced after 4 weeks of TiO2 NPs exposure (5 mg/kg/2 days/week) using wild-type and Nrf2 knockout C57bl6 mice. Results showed that Nrf2 protects against inflammation and oxidative damage induced by TiO2 NPs exposure, however, Nrf2 is a positive mediator in the expression of IFN-γ, TNF-α, and TGF-ß in bronchial epithelium and alveolar space after 4 weeks of exposure. These results suggest that Nrf2 has a central role in up-regulation of cytokines released during inflammation induced by TiO2 NPs and those cytokines are needed to cope with histological alterations in lung tissue.


Assuntos
Citocinas/metabolismo , Inflamação/etiologia , Pulmão/metabolismo , Nanopartículas Metálicas/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Titânio/química , Animais , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Interferon gama/metabolismo , Pulmão/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
J Am Chem Soc ; 136(17): 6406-20, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24673286

RESUMO

We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content (0-8.9%) allowed electron transfer from Co3O4 to PdO to align Fermi energy levels across the heterojunctions. This alignment was accompanied by free hole accumulation at the Co3O4 interface and production of hydroxyl radicals. Interestingly, there was no concomitant superoxide generation, which could reflect the hole dominance of a p-type semiconductor. Although the electron flux across the heterojunctions induced upward band bending, the E(c) levels of the doped particles showed energy overlap with the biological redox potential (BRP). This allows electron capture from the redox couples that maintain the BRP from -4.12 to -4.84 eV, causing disruption of cellular redox homeostasis and induction of oxidative stress. PdO/Co3O4 nanoparticles showed significant increases in cytotoxicity at 25, 50, 100, and 200 µg/mL, which was enhanced incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative stress presented as a tiered cellular response involving superoxide generation, glutathione depletion, cytokine production, and cytotoxicity in epithelial and macrophage cell lines. A progressive series of acute pro-inflammatory effects could also be seen in the lungs of animals exposed to incremental PdO-doped particles. All considered, generation of a combinatorial PdO/Co3O4 nanoparticle library with incremental heterojunction density allowed us to demonstrate the integrated role of E(v), E(c), and E(f) levels in the generation of oxidant injury and inflammation by the p-type semiconductor, Co3O4.


Assuntos
Cobalto/toxicidade , Pulmão/efeitos dos fármacos , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Óxidos/toxicidade , Paládio/toxicidade , Semicondutores/efeitos adversos , Animais , Linhagem Celular , Cobalto/química , Citotoxinas/química , Citotoxinas/toxicidade , Humanos , Pulmão/citologia , Pulmão/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas/química , Nanopartículas/ultraestrutura , Óxidos/química , Paládio/química
12.
Small ; 10(2): 385-98, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24039004

RESUMO

Since more than 30% of consumer products that include engineered nanomaterials contain nano-Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)-coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag(+) . In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag(+) release leading to a sub-chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub-chronic lung injury potential.


Assuntos
Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/química , Animais , Disponibilidade Biológica , Linhagem Celular , Feminino , Humanos , Masculino , Nanopartículas Metálicas/toxicidade , Camundongos , Microscopia Eletrônica de Transmissão , Ratos , Prata/farmacocinética , Prata/toxicidade , Solubilidade , Testes de Toxicidade Subcrônica
13.
Acc Chem Res ; 46(3): 607-21, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22676423

RESUMO

The production of engineered nanomaterials (ENMs) is a scientific breakthrough in material design and the development of new consumer products. While the successful implementation of nanotechnology is important for the growth of the global economy, we also need to consider the possible environmental health and safety (EHS) impact as a result of the novel physicochemical properties that could generate hazardous biological outcomes. In order to assess ENM hazard, reliable and reproducible screening approaches are needed to test the basic materials as well as nanoenabled products. A platform is required to investigate the potentially endless number of biophysicochemical interactions at the nano/bio interface, in response to which we have developed a predictive toxicological approach. We define a predictive toxicological approach as the use of mechanisms-based high-throughput screening in vitro to make predictions about the physicochemical properties of ENMs that may lead to the generation of pathology or disease outcomes in vivo. The in vivo results are used to validate and improve the in vitro high-throughput screening (HTS) and to establish structure-activity relationships (SARs) that allow hazard ranking and modeling by an appropriate combination of in vitro and in vivo testing. This notion is in agreement with the landmark 2007 report from the US National Academy of Sciences, "Toxicity Testing in the 21st Century: A Vision and a Strategy" (http://www.nap.edu/catalog.php?record_id=11970), which advocates increased efficiency of toxicity testing by transitioning from qualitative, descriptive animal testing to quantitative, mechanistic, and pathway-based toxicity testing in human cells or cell lines using high-throughput approaches. Accordingly, we have implemented HTS approaches to screen compositional and combinatorial ENM libraries to develop hazard ranking and structure-activity relationships that can be used for predicting in vivo injury outcomes. This predictive approach allows the bulk of the screening analysis and high-volume data generation to be carried out in vitro, following which limited, but critical, validation studies are carried out in animals or whole organisms. Risk reduction in the exposed human or environmental populations can then focus on limiting or avoiding exposures that trigger these toxicological responses as well as implementing safer design of potentially hazardous ENMs. In this Account, we review the tools required for establishing predictive toxicology paradigms to assess inhalation and environmental toxicological scenarios through the use of compositional and combinatorial ENM libraries, mechanism-based HTS assays, hazard ranking, and development of nano-SARs. We will discuss the major injury paradigms that have emerged based on specific ENM properties, as well as describing the safer design of ZnO nanoparticles based on characterization of dissolution chemistry as a major predictor of toxicity.


Assuntos
Nanoestruturas/toxicidade , Testes de Toxicidade , Animais , Linhagem Celular , Ensaios de Triagem em Larga Escala , História do Século XXI , Humanos , Modelos Biológicos , Nanoestruturas/história , Toxinas Biológicas/toxicidade
14.
Small ; 9(9-10): 1595-607, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-23180683

RESUMO

Engineered nanomaterials (ENMs) continue to attract significant attention because they have novel physicochemical properties that can improve the functions of products that will benefit human lives. However, the physicochemical properties that make ENMs attractive could interact with biological systems and induce cascades of events that cause toxicological effects. Recently, there have been more studies suggesting inflammasome activation may play an important role in ENM-induced biological responses. Inflammasomes are a family of multiprotein complexes that are increasingly recognized as major mediators of the host immune system. Among these, NLRP3 inflammasome is the most studied that could directly interact with ENMs to generate inflammatory responses. In this review, the ENM physicochemical properties are linked to NLRP3 inflammasome activation. An understanding of the mechanisms of ENM-NLRP3 inflammasome interactions will provide us with strategies for safer nanomaterial design and therapy.


Assuntos
Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Nanoestruturas , Catepsina B/metabolismo , Humanos , Transporte de Íons , Lisossomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Small ; 9(9-10): 1776-85, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-23180726

RESUMO

The zebrafish is emerging as a model organism for the safety assessment and hazard ranking of engineered nanomaterials. In this Communication, the implementation of a roboticized high-throughput screening (HTS) platform with automated image analysis is demonstrated to assess the impact of dissolvable oxide nanoparticles on embryo hatching. It is further demonstrated that this hatching interference is mechanistically linked to an effect on the metalloprotease, ZHE 1, which is responsible for degradation of the chorionic membrane. The data indicate that 4 of 24 metal oxide nanoparticles (CuO, ZnO, Cr2 O3 , and NiO) could interfere with embryo hatching by a chelator-sensitive mechanism that involves ligation of critical histidines in the ZHE1 center by the shed metal ions. A recombinant ZHE1 enzymatic assay is established to demonstrate that the dialysates from the same materials responsible for hatching interference also inhibit ZHE1 activity in a dose-dependent fashion. A peptide-based BLAST search identifies several additional aquatic species that express enzymes with homologous histidine-based catalytic centers, suggesting that the ZHE1 mechanistic paradigm could be used to predict the toxicity of a large number of oxide nanoparticles that pose a hazard to aquatic species.


Assuntos
Ensaios de Triagem em Larga Escala , Nanopartículas Metálicas/toxicidade , Óxidos/química , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Nanopartículas Metálicas/química , Metaloproteases/metabolismo , Dados de Sequência Molecular , Solubilidade
16.
Small ; 9(9-10): 1428-43, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-23027589

RESUMO

UC CEIN was established with funding from the US National Science Foundation and the US Environmental Protection Agency in 2008 with the mission to study the impact of nanotechnology on the environment, including the identification of hazard and exposure scenarios that take into consideration the unique physicochemical properties of engineered nanomaterials (ENMs). Since its inception, the Center has made great progress in assembling a multidisciplinary team to develop the scientific underpinnings, research, knowledge acquisition, education and outreach that is required for assessing the safe implementation of nanotechnology in the environment. In this essay, the development of the infrastructure, protocols, and decision-making tools that are required to effectively integrate complementary scientific disciplines allowing knowledge gathering in a complex study area that goes beyond the traditional safety and risk assessment protocols of the 20th century is outlined. UC CEIN's streamlined approach, premised on predictive hazard and exposure assessment methods, high-throughput discovery platforms and environmental decision-making tools that consider a wide range of nano/bio interfaces in terrestrial and aquatic ecosystems, demonstrates the implementation of a 21st-century approach to the safe implementation of nanotechnology in the environment.


Assuntos
Meio Ambiente , Poluentes Ambientais/toxicidade , Nanoestruturas/toxicidade , Nanotecnologia , Estados Unidos , United States Environmental Protection Agency
17.
Arch Toxicol ; 87(1): 99-109, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22885792

RESUMO

To uncover the size influence of TiO(2) nanoparticles on their potential toxicity, the cytotoxicity of different-sized TiO(2) nanoparticles with and without photoactivation was tested. It was demonstrated that without photoactivation, TiO(2) nanoparticles were inert up to 100 µg/ml. On the contrary, with photoactivation, the toxicity of TiO(2) nanoparticles significantly increased, which correlated well with the specific surface area of the particles. Our results also suggest that the generation of hydroxyl radicals and reactive oxygen species (ROS)-mediated damage to the surface-adsorbed biomolecules could be the two major reasons for the cytotoxicity of TiO(2) nanoparticles after photoactivation. Higher ROS generation from smaller particles was detected under both biotic and abiotic conditions. Smaller particles could adsorb more proteins, which was confirmed by thermogravimetric analysis. To further investigate the influence of the generation of hydroxyl radicals and adsorption of protein, poly (ethylene-alt-maleic anhydride) (PEMA) and chitosan were used to coat TiO(2) nanoparticles. The results confirmed that surface coating of TiO(2) nanoparticles could reduce such toxicity after photoactivation, by hindering adsorption of biomolecules and generation of hydroxyl radical (·OH) during photoactivation.


Assuntos
Dermatite Fototóxica , Nanopartículas Metálicas/toxicidade , Tamanho da Partícula , Adsorção , Animais , Linhagem Celular/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Materiais Revestidos Biocompatíveis/toxicidade , Radical Hidroxila/metabolismo , Maleatos/química , Maleatos/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Camundongos , Microscopia Eletrônica de Varredura , Polietilenos/química , Polietilenos/farmacologia , Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade/métodos , Raios Ultravioleta
18.
Nano Lett ; 12(6): 3050-61, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22546002

RESUMO

We compared the use of bovine serum albumin (BSA) and pluronic F108 (PF108) as dispersants for multiwalled carbon nanotubes (MWCNTs) in terms of tube stability as well as profibrogenic effects in vitro and in vivo. While BSA-dispersed tubes were a potent inducer of pulmonary fibrosis, PF108 coating protected the tubes from damaging the lysosomal membrane and initiating a sequence of cooperative cellular events that play a role in the pathogenesis of pulmonary fibrosis. Our results suggest that PF108 coating could serve as a safer design approach for MWCNTs.


Assuntos
Materiais Revestidos Biocompatíveis/química , Lisossomos/efeitos dos fármacos , Lisossomos/patologia , Nanotubos de Carbono/toxicidade , Poloxâmero/química , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/prevenção & controle , Administração por Inalação , Animais , Camundongos , Fibrose Pulmonar/patologia
19.
J Am Chem Soc ; 134(38): 15790-804, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-22924492

RESUMO

We have developed structure/toxicity relationships for amorphous silica nanoparticles (NPs) synthesized through low-temperature colloidal (e.g., Stöber silica) or high-temperature pyrolysis (e.g., fumed silica) routes. Through combined spectroscopic and physical analyses, we have determined the state of aggregation, hydroxyl concentration, relative proportion of strained and unstrained siloxane rings, and potential to generate hydroxyl radicals for Stöber and fumed silica NPs with comparable primary particle sizes (16 nm in diameter). On the basis of erythrocyte hemolytic assays and assessment of the viability and ATP levels in epithelial and macrophage cells, we discovered for fumed silica an important toxicity relationship to postsynthesis thermal annealing or environmental exposure, whereas colloidal silicas were essentially nontoxic under identical treatment conditions. Specifically, we find for fumed silica a positive correlation of toxicity with hydroxyl concentration and its potential to generate reactive oxygen species (ROS) and cause red blood cell hemolysis. We propose fumed silica toxicity stems from its intrinsic population of strained three-membered rings (3MRs) along with its chainlike aggregation and hydroxyl content. Hydrogen-bonding and electrostatic interactions of the silanol surfaces of fumed silica aggregates with the extracellular plasma membrane cause membrane perturbations sensed by the Nalp3 inflammasome, whose subsequent activation leads to secretion of the cytokine IL-1ß. Hydroxyl radicals generated by the strained 3MRs in fumed silica, but largely absent in colloidal silicas, may contribute to the inflammasome activation. Formation of colloidal silica into aggregates mimicking those of fumed silica had no effect on cell viability or hemolysis. This study emphasizes that not all amorphous silicas are created equal and that the unusual toxicity of fumed silica compared to that of colloidal silica derives from its framework and surface chemistry along with its fused chainlike morphology established by high-temperature synthesis (>1300 °C) and rapid thermal quenching.


Assuntos
Coloides , Nanopartículas/toxicidade , Dióxido de Silício/química , Trifosfato de Adenosina/análise , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Humanos , Microscopia Confocal , Microscopia Eletrônica de Transmissão
20.
Environ Sci Technol ; 46(4): 2398-405, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22148163

RESUMO

By exploiting a genome-wide collection of bacterial single-gene deletion mutants, we have studied the toxicological pathways of a 60-nm cationic (amino-functionalized) polystyrene nanomaterial (PS-NH(2)) in bacterial cells. The IC(50) of commercially available 60 nm PS-NH(2) was determined to be 158 µg/mL, the IC(5) is 108 µg/mL, and the IC(90) is 190 µg/mL for the parent E. coli strain of the gene deletion library. Over 4000 single nonessential gene deletion mutants of Escherichia coli were screened for the growth phenotype of each strain in the presence and absence of PS-NH(2). This revealed that genes clusters in the lipopolysaccharide biosynthetic pathway, outer membrane transport channels, ubiquinone biosynthetic pathways, flagellar movement, and DNA repair systems are all important to how this organism responds to cationic nanomaterials. These results, coupled with those from confirmatory assays described herein, suggest that the primary mechanisms of toxicity of the 60-nm PS-NH(2) nanomaterial in E. coli are destabilization of the outer membrane and production of reactive oxygen species. The methodology reported herein should prove generally useful for identifying pathways that are involved in how cells respond to a broad range of nanomaterials and for determining the mechanisms of cellular toxicity of different types of nanomaterials.


Assuntos
Escherichia coli/efeitos dos fármacos , Genoma Bacteriano/efeitos dos fármacos , Nanoestruturas/toxicidade , Poliestirenos/toxicidade , Aminas/química , Aminas/toxicidade , Membrana Celular/efeitos dos fármacos , Escherichia coli/fisiologia , Deleção de Genes , Nanoestruturas/química , Poliestirenos/química , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa