Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Environ Manage ; 344: 118373, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37329586

RESUMO

China is presently confronted with the intricate challenge of simultaneously mitigating air pollution and decelerating the pace of climate change. An integrated perspective to investigate the synergetic control of CO2 and air pollutant emissions is in an urgent need. Using data for 284 Chinese cities from 2009 to 2017, we introduced an indicator called coupling and coordination degree of CO2 and air pollutant emissions control (CCD) and found an upward and spatial agglomeration trend of CCD distribution during the research period. Then, this study posed a specific focus on the impact of China's Air Pollution Prevention and Control Action Plan (APPCAP). The DID model revealed that implementation of the APPCAP resulted in a 4.0% increase in CCD for cities with special emission limits, attributed to industrial structural adjustments and the promotion of technology innovation. Furthermore, we also identified positive spillover effects of the APPCAP on neighboring control group cities situated within 350 km of the treatment group cities, providing an explanation for the spatial agglomeration trend observed in CCD distribution. These findings hold significant implications for the synergetic control in China and underscored the potential benefits of industrial structural adjustments and technology innovation in mitigating environmental pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Cidades , Dióxido de Carbono , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , China , Material Particulado/análise
2.
Ecotoxicol Environ Saf ; 208: 111474, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33129119

RESUMO

To investigate composition characteristics and assess occupational health risks and odor pollution of volatile organic compounds (VOCs) from industrial activities in the Yangtze River Delta (YRD) region, China, one-year field measurements of VOCs were conducted simultaneously at an iron and steel industrial park (ISP), one chemical industrial park (CMP) and one petrochemical industrial park (PCP) from September, 2018 to August, 2019. The concentrations of VOCs were 80.2 ± 67.9 ppbv, 28.1 ± 27.2 ppbv and 144 ± 378 ppbv for ISP, CMP and PCP, respectively. Aromatics, alkanes and alkenes were the major components of VOCs at ISP, CMP and PCP, respectively. Moreover, the toluene to benzene ratios were 0.330 ± 0.302, 4.31 ± 6.48 and 1.84 ± 3.34, which generally showed the characteristics of combustion source for ISP, industrial activities for CMP and petrochemical industry for PCP, respectively. The hazard index values were 0.752 ± 0.438, 0.108 ± 0.248 and 0.090 ± 0.260 at ISP, CMP and PCP, which were generally lower than threshold limit value, suggesting a low noncarcinogenic risk for workers. Meanwhile, the 95th percentile LCR values of VOCs were 8.76 × 10-5, 1.15 × 10-5 and 1.00 × 10-5 at ISP, CMP and PCP, respectively, which were also under acceptable risk level, indicating a low carcinogenic risk. Benzene and 1,3-butadiene were main harmful substances for both noncarcinogenic and carcinogenic risks of VOCs. The odor levels of VOCs were 2.12 ± 4.21, 12.5 ± 28.7 and 1.01 ± 7.84 at ISP, CMP and PCP, respectively. Aromatics for ISP and sulfide compounds for CMP and PCP were primary pollutants for odor pollution. This work could improve the understanding of risk levels and odor characteristics of VOCs and benefit policy development on alleviating odor complaints and health risks for workers in YRD region, China.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Alcanos/análise , China , Monitoramento Ambiental , Poluição Ambiental , Humanos , Indústrias , Medição de Risco , Rios , Aço , Tolueno
3.
J Environ Sci (China) ; 106: 26-38, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34210437

RESUMO

To investigate the air quality change during the COVID-19 pandemic, we analyzed spatiotemporal variations of six criteria pollutants in nine typical urban agglomerations in China using ground-based data and examined meteorological influences through correlation analysis and backward trajectory analysis under different responses. Concentrations of PM2.5, PM10, NO2, SO2 and CO in urban agglomerations respectively decreased by 18%-45% (30%-62%), 17%-53% (22%-39%), 47%-64% (14%-41%), 9%-34% (0%-53%) and 16%-52% (23%-56%) during Lockdown (Post-lockdown) period relative to Pre-lockdown period. PM2.5 pollution events occurred during Lockdown in Beijing-Tianjin-Hebe (BTH) and Middle and South Liaoning (MSL), and daily O3 concentration rose to grade Ⅱ standard in Post-lockdown period. Distinct from the nationwide slump of NO2 during Lockdown period, a rebound (∼40%) in Post-lockdown period was observed in Cheng-Yu (CY), Yangtze River Middle-Reach (YRMR), Yangtze River Delta (YRD) and Pearl River Delta (PRD). With slightly higher wind speed compared with 2019, the reduction of PM2.5 (51%-62%) in Post-lockdown period is more than 2019 (15%-46%) in HC (Harbin-Changchun), MSL, BTH, CP (Central Plain) and SP (Shandong-Peninsula), suggesting lockdown measures are effective to PM2.5 alleviation. Although O3 concentrations generally increased during the lockdown, its increment rate declined compared with 2019 under similar sunlight duration and temperature. Additionally, unlike HC, MSL and BTH, which suffered from additional (> 30%) air masses from surrounding areas after the lockdown, the polluted air masses reaching YRD and PRD mostly originated from the long-distance transport, highlighting the importance of joint regional governance.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Pequim , China , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Pandemias , Material Particulado/análise , SARS-CoV-2
4.
Environ Sci Pollut Res Int ; 29(34): 51635-51650, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35247176

RESUMO

To effectively investigate the characteristics, source analysis, and chemical conversions of volatile organic compounds (VOCs) pollution in a typical petrochemical area, 81 VOC species from nine sampling sites were collected from 1st January to 31th December 2019 in Jinshan District. Results showed the concentration of VOCs was 51.63 ± 36.05 ppbv, and VOCs were dominated by alkane (40.10%) and alkenes (39.91%). The temporal variations of VOCs showed that the highest average VOC concentration appeared in July, and the lowest concentration of VOCs was in February. The concentration of VOCs was mainly connected with industrial processes and was transported to other areas through the downwind direction. Six PMF-derived sources including petrochemical industry, solvent utilization, vehicle exhaust, fuel evaporation, combustion, and other industry processes, contributing 37.08%, 16.74%, 16.69%, 14.99%, 9.53%, and 4.97%, respectively. Meanwhile, an anthropogenic VOC emission inventory was established by emission factors and the activity statistics for 2019, results indicated that the total emission of VOCs was estimated as 6.22 kt, petrochemical industry was the most important contributor of human-produced VOCs. The LOH concentration was 396.12 ppbv via OH radical loss rate method, and the OFP was 210.44 ppbv based on the MIR factor. Alkenes and aromatics were the important components of O3 formation. This study provides effective information for corresponding governments to establish VOCs contamination control directives.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Alcenos/análise , China , Monitoramento Ambiental/métodos , Humanos , Ozônio/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
5.
Environ Sci Pollut Res Int ; 28(33): 45344-45352, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33864221

RESUMO

To control the spread of COVID-19, China has imposed national lockdown policies to restrict the movement of its population since the Chinese New Year of January 2020. In this study, we quantitatively analyzed the changes of pollution sources in Shanghai during the COVID-19 lockdown; a high-resolution emission inventory of typical pollution sources including stationary source, mobile source, and oil and gas storage and transportation source was established based on pollution source data from January to February 2020. The results show that the total emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), particulate matter (PM), and volatile organic compounds (VOCs) were 9520.2, 37,978.6, 2796.7, and 7236.9 tons, respectively, during the study period. Affected by the COVID-19 lockdown, the mobile source experienced the largest decline. The car mileage and oil sales decreased by about 80% during the COVID-19 lockdown (P3) when compared with those during the pre-Spring Festival (P1). The number of aircraft activity decreased by approximately 50%. The impact of the COVID-19 epidemic on industries such as iron and steel and petrochemicals was less significant, while the greater impact was on coatings, chemicals, rubber, and plastic. The emissions of SO2, NOx, PM2.5, and VOCs decreased by 11%, 39%, 37%, and 47%, respectively, during P3 when compared with those during P1. The results show that the measures to control the spread of the COVID-19 epidemic made a significant contribution to emission reductions. This study may provide a reference for other countries to assess the impact of the COVID-19 epidemic on emissions and help establish regulatory actions to improve air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Material Particulado/análise , SARS-CoV-2
6.
Environ Pollut ; 289: 117868, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364117

RESUMO

Black carbon (BC) measurements were performed at Pudong (PD) urban supersite and Gonghexin (GH) roadside station from December 1, 2017 to August 10, 2020 to investigate the variations, source characteristics, and population exposure levels of BC in traffic and urban areas in Shanghai, China. The BC median concentration at GH was more than two-fold that at PD. Absorption Ångström exponent (AAE) values were 1.27 ± 0.17 and 1.31 ± 0.17 at PD and GH, respectively, suggesting the dominance of liquid fossil fuel combustion sources (i.e., traffic exhaust) at these stations. The higher BC and AAE values in winter at PD indicated the relatively increasing contribution of solid fuels (i.e., biomass burning) to BC concentration in urban Shanghai. The diurnal variation in BC showed similar twin-peak patterns at PD and GH, implying that traffic emission mainly contributed to ambient BC concentration in urban Shanghai. The estimated daily intakes (EDIs) of BC were generally higher in males than in females at both PD and GH. The highest BC EDIs at PD were found in age subgroups 1-<2 and 2-<3 years. In contrast, the BC EDIs at GH were observed in age subgroups 6-<9, 12-<15, and 15-<18 years, which were higher than those determined at PD, indicating that more attention must be paid to BC exposure of the population in these age subgroups. These results provide scientific insights into variations, source characteristics, and population exposure levels of BC in urban and traffic areas and could help in the development of BC control strategies in Shanghai.


Assuntos
Poluentes Atmosféricos , Adolescente , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Pré-Escolar , China , Monitoramento Ambiental , Feminino , Humanos , Masculino , Fuligem/análise
7.
Sci Total Environ ; 777: 145990, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33684762

RESUMO

To investigate the multi-year atmospheric characteristic and population exposure level of black carbon (BC) in the Yangtze River Delta (YRD) region, China, about five years of ambient BC measurement was performed at Dianshan Lake (DSL) regional Supersite from February 2014 to February 2019. BC concentration at DSL was 1.39 ± 1.15 µg m-3, which was at low to medium level compared to other areas in the world, and annual BC level was decreased by an average of 45.4% from 2014 to 2018. The absorption Ångström exponent (AAE) value was 1.30 ± 0.173, indicating the predominant contribution of liquid fuel sources such as traffic exhaust to BC. Meanwhile, AAE and BC values both showed the winter-high and summer-low temporal patterns, which highlighted the increasing contribution from solid fuels to BC in winter. Moreover, diurnal characteristics of BC, AAE, carbon monoxide and nitrogen oxide demonstrated the dominance of traffic sources for BC. The average estimated daily intakes (EDIs) of BC through inhalation for 17 population age subgroups were 0.0177-0.0811 µg kg-1 day-1, which the highest EDIs for male and female were both observed in infants (9 months ~ < 1 year). Male generally taken higher exposure level of BC compared to female. This work could improve the insights for atmospheric characteristic and population exposure level of BC, and potentially facilitate the development of abatement policies of BC in YRD region, China.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Feminino , Humanos , Recém-Nascido , Masculino , Rios , Fuligem/análise
8.
Environ Pollut ; 267: 115612, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254633

RESUMO

To investigate chemical characteristics, abatement mechanisms and regional transport of atmospheric pollutants during the COVID-19 outbreak control period in the Yangtze River Delta (YRD) region, China, the measurements of air pollutants including fine particulate matter (PM2.5) and volatile organic compounds (VOCs) on non-control period (NCP, 24 December 2019-23 January 2020) and control period (CP, 24 January-23 February 2020) were analyzed at the urban Pudong Supersite (PD) and the regional Dianshan Lake Supersite (DSL). Due to the stricter outbreak control, the levels of PM2.5 and VOCs, and the occurrence frequencies of haze-fog episodes decreased substantially from NCP to CP, with average reduction rates of 31.6%, 38.9% and 35.1% at PD, and 34.5%, 50.7% and 37.9% at DSL, respectively. The major source for PM2.5 was secondary sulfate & nitrate in both periods, and the emission control of primary sources such as coal burning and vehicle exhaust decreased the levels of precursors gas sulfur dioxide and nitrogen oxide, which highly contributed to the abatement of PM2.5 from NCP to CP. The higher levels of ozone at both PD and DSL on CP might be due to the weak nitrogen monoxide titration, low relative humidity and high visibility compared with NCP. Vehicle exhaust and fugitive emission from petrochemical industry were the major contributors of ambient VOCs and their decreasing activities mainly accounted for VOCs abatement. Moreover, the high frequency of haze-fog events was closely impacted by medium-scale regional transport within Anhui and Jiangsu provinces. Therefore, the decreasing regional transported air pollutants coincided with the emission control of local sources to cause the abatement of haze-fog events in YRD region on CP. This study could improve the understanding of the change of atmospheric pollutants during the outbreak control period, and provide scientific base for haze-fog pollution control in YRD region, China.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Ambientais , China , Surtos de Doenças , Monitoramento Ambiental , Humanos , Pandemias , Material Particulado , Estações do Ano
9.
Sci Total Environ ; 744: 140825, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32755775

RESUMO

In China, the corresponding control directives for volatile organic compounds (VOCs) have been based on primary emissions, rarely considering reactive speciation. To seek more effective VOCs control strategies, we investigated 107 VOC species in a typical coastal city (Beihai) of South China, from August to November 2018. Meanwhile, a high-resolution anthropogenic VOCs monthly emission inventory (EI) was established for 2018. For source apportionments (SAs) reliability, comparisons of source structures derived from positive matrix factorization (PMF) and EI were made mainly in terms of reaction losses, uncertainties and specific ratios. Finally, for the source-end control, a comprehensive reactivity control index (RCI) was established by combing SAs with reactive speciation profiles. Ambient measurements showed that the average concentration of VOCs was 26.38 ppbv, dominated by alkanes (36.7%) and oxygenated volatile organic compounds (OVOCs) (29.4%). VOC reactivity was estimated using ozone formation potential (52.35 ppbv) and propylene-equivalent concentration (4.22 ppbv). EI results displayed that the entire VOC, OFP, and propylene-equivalent emissions were 40.98 Gg, 67.98 Gg, and 105.93 Gg, respectively. Comparisons of source structures indicated that VOC SAs agreed within ±100% between two perspectives. Both PMF and EI results showed that petrochemical industry (24.0% and 33.0%), food processing and associated combustion (19.1% and 29.2%) were the significant contributors of anthropogenic VOCs, followed by other industrial processes (22.2% and 13.3%), transportation (18.9% and 12.0%), and solvent utilization (9.1% and10.5%). Aimed at VOCs abatement according to RCI: for terminal control, fifteen ambient highly reactive species (predominantly alkenes and alkanes) were targeted; for source control, the predominant anthropogenic sources (food industry, solvent usage, petrochemical industry and transportation) and their emitted highly reactive species were determined. Particularly, with low levels of ambient VOC and primary emissions, in this VOC and NOx double-controlled regime, crude disorganized emission from food industry contributed a high RCI.

10.
Environ Sci Pollut Res Int ; 26(12): 12171-12180, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30830665

RESUMO

In this study, pine needles were used as biomonitors to investigate the levels, spatial distributions, and possible sources of polybrominated diphenyl ethers (PBDEs) and four emerging halogenated flame retardants (HFRs) in the atmosphere of Shanghai, China. The four emerging HFRs were hexabromocyclododecane (HBCD), decabromodiphenylethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), and dechlorane plus (DP), with the first 3 HFRs being non-polybrominated diphenyl ether brominated flame retardants (non-PBDE BFRs). The total concentrations ranged from 3.71 to 4020 ng g-1 dry weight (dw) for 52 PBDE congeners (Σ52BDEs), < MDL (method detection limit) to 15.2 ng g-1 dw for three non-PBDE BFRs (Σ3non-PBDE BFRs), and 0.815 to 1090 pg g-1 dw for two DP isomers (ΣDP), respectively. High levels of PBDEs, three non-PBDE BFRs, and DP were found in pine needles from suburbs and Pudong, which was a consequence of industrial activities. The fraction of anti-DP isomer (fanti) in pine needles ranged from 0.515 to 0.939 with a mean value of 0.721, and most of the fanti values were consistent with those of technical DP formulations. Principal component analysis-multiple linear regression (PCA-MLR) model identified four sources of PBDEs in pine needles with the quantified contributions: degradation of technical PBDE formulations (49.5%), technical deca-BDE (6.9%), technical penta-BDE (25.1%), and technical octa-BDE (18.5%). These findings are expected to help understand the pollution level, fate, and possible sources of HFRs in the atmosphere of Shanghai and provide a basis for air pollution control and management in Shanghai.


Assuntos
Poluentes Atmosféricos/metabolismo , Monitoramento Ambiental , Retardadores de Chama/metabolismo , Éteres Difenil Halogenados/metabolismo , Poluentes Atmosféricos/análise , Atmosfera/química , China , Poluição Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Halogenação , Hidrocarbonetos Bromados , Hidrocarbonetos Clorados , Pinus/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Compostos Policíclicos
11.
Sci Total Environ ; 653: 475-484, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30412892

RESUMO

The characteristics of regional environmental pollution of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in river system from Shanghai were comprehensively investigated in this study for the first time. The total concentrations of SCCPs and MCCPs ranged from 15.0 to 1640 ng L-1 (median: 278 ng L-1) and 40.3 to 3870 ng L-1 (median: 939 ng L-1) in water, and from not detected (ND) to 2020 ng g-1 (median: 89.3 ng g-1) and 10.1 to 10,800 ng g-1 (median: 947 ng g-1) in sediments, respectively. The higher levels of SCCPs and MCCPs were found in water from Jinhui and Yexie rivers, and in sediments from Huangpu River, respectively. The concentrations of MCCPs were higher than those of SCCPs in both water and sediments, suggesting that the river system was mainly contaminated by MCCPs. Compared with other areas around the world, the concentrations of SCCPs and MCCPs were at medium to high levels in water and sediments. Factor analysis results revealed that SCCPs and MCCPs had different sources in both water and sediments. The log Koc values of CPs were significantly correlated with carbon chain lengths (p < 0.01), but not with chlorine number for both SCCPs and MCCPs (p > 0.05). A significant second-order polynomial relationship was observed between log Koc values and molecular weights of homologue groups of SCCPs (p < 0.001) and MCCPs (p < 0.01), respectively. SCCPs in water posed a low ecological risk at all sampling sites, and MCCPs in water posed a moderate ecological risk to aquatic life at nearly a fifth of sampling sites. SCCPs and MCCPs in sediments posed a low ecological risk to sediment dwelling organisms at most sampling sites.

12.
Chemosphere ; 193: 108-117, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29127835

RESUMO

The aims of this study were to investigate the levels, possible sources and potential ecological risks of 26 polycyclic aromatic hydrocarbons (PAHs) including highly carcinogenic dibenzopyrene (DBP) isomers and 4 synthetic musks (SMs) in river sediments from Shanghai. 74 sediment samples were collected from the Huangpu River and its main tributaries. The total concentrations ranged from 52.0 to 11400 ng g-1 for Σ26PAHs, 25.1-9910 ng g-1 for 16 USEPA priority PAHs (Σ16PAHs), 0.769-384 ng g-1 for Σ4DBPs, and 0.080-63.3 ng g-1 for Σ4SMs, respectively. Seven sources of PAHs in river sediments were identified by positive matrix factorization (PMF) model. Coal combustion, vehicle and creosote were the major emission sources for PAHs. SMs came mainly from domestic and industrial wastewaters. The toxic equivalent quantities of the benzo[a]pyrene (TEQBaP) ranged from 7.64 to 3920 ng g-1 for Σ24PAHs, 2.07-1150 ng g-1 for Σ16PAHs, and 5.53-3150 ng g-1 for Σ4DBPs. The TEQBaP of Σ4DBPs made up 73.9% of Σ24PAHs, which indicated that DBPs were the major carcinogenic contributors to total PAHs in sediments. According to sediment quality guidelines (SQGs) and mean PEL-Q values, the risks posed by PAHs in sediments were at medium level at most sampling sites, and SMs posed a low ecological risk to sediment-dwelling organisms in Shanghai.


Assuntos
Monitoramento Ambiental , Ácidos Graxos Monoinsaturados/análise , Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Benzo(a)pireno , Carcinógenos/análise , China , Carvão Mineral/análise , Ecologia , Medição de Risco , Rios/química
13.
Chemosphere ; 180: 302-311, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28412487

RESUMO

In order to systematically investigate the spatial distribution, homologue profiles, and sources of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in suburban soils in Shanghai, SCCPs and MCCPs in soils were analyzed using gas chromatography coupled with low resolution mass spectrometry in electron capture negative ion (ECNI) mode (GC-ECNI-MS). The CP concentrations in soils were between not detected (ND) - 697 ng g-1 with a median value of 3.52 ng g-1 for SCCPs, and ND - 666 ng g-1 with a median value of 15.3 ng g-1 for MCCPs, respectively. The concentrations of MCCPs in most soils were higher than that of SCCPs. The total CP concentrations (sum of SCCPs and MCCPs) in soils varied from ND to 964 ng g-1 with a median value of 20.5 ng g-1. The concentration of MCCPs was higher than that of SCCPs in most soils. The levels of SCCPs and MCCPs in suburban soils in Shanghai were at the medium level when compared to other areas around the world. No significant correlation was observed between soil CP concentrations and total organic carbon contents (p > 0.05). For different use type of soils, the median concentrations of CPs in soils were found higher in greenland than that in other areas probably due to busy traffic, sewage sludge application and/or wastewater irrigation. All soils were divided into two groups by hierarchical cluster analysis (HCA) both for SCCPs and MCCPs. Three discharge sources of CPs in suburban soil of Shanghai were identified by PMF model.


Assuntos
Monitoramento Ambiental , Parafina/análise , Poluentes do Solo/análise , China , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Clorados/análise , Solo/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa