Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
BMC Plant Biol ; 24(1): 588, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902602

RESUMO

BACKGROUND: Soapberry (Sapindus mukorossi) is an economically important multifunctional tree species. Triterpenoid saponins have many functions in soapberry. However, the types of uridine diphosphate (UDP) glucosyltransferases (UGTs) involved in the synthesis of triterpenoid saponins in soapberry have not been clarified. RESULTS: In this study, 42 SmUGTs were identified in soapberry, which were unevenly distributed on 12 chromosomes and had sequence lengths of 450 bp to 1638 bp, with an average of 1388 bp. The number of amino acids in SmUGTs was 149 to 545, with an average of 462. Most SmUGTs were acidic and hydrophilic unstable proteins, and their secondary structures were mainly α-helices and random coils. All had conserved UDPGT and PSPG-box domains. Phylogenetic analysis divided them into four subclasses, which glycosylated different carbon atoms. Prediction of cis-acting elements suggested roles of SmUGTs in plant development and responses to environmental stresses. The expression patterns of SmUGTs differed according to the developmental stage of fruits, as determined by transcriptomics and RT-qPCR. Co-expression network analysis of SmUGTs and related genes/transcription factors in the triterpenoid saponin synthesis pathway was also performed. The results indicated potential roles for many transcription factors, such as SmERFs, SmGATAs and SmMYBs. A correlation analysis showed that 42 SmUGTs were crucial in saponin synthesis in soapberry. CONCLUSIONS: Our findings suggest optimal targets for manipulating glycosylation in soapberry triterpenoid saponin biosynthesis; they also provide a theoretical foundation for further evaluation of the functions of SmUGTs and analyses of their biosynthetic mechanisms.


Assuntos
Glucosiltransferases , Filogenia , Sapindus , Saponinas , Triterpenos , Saponinas/biossíntese , Saponinas/metabolismo , Sapindus/genética , Sapindus/metabolismo , Triterpenos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Ecotoxicol Environ Saf ; 269: 115734, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016192

RESUMO

Dissolved organic matter (DOM) which can help the transportation of nutrients and pollutants plays essential role in the aquatic ecosystems. However, the dynamics of individual DOM component under the change of latitude have not been elucidated to date. The composition and dynamics of DOM were assessed in this study. Two individual parallel factor analysis (PARAFAC) components were found in each sampling site in Heilongjiang. To further characterize the inner change of the identified PARAFAC components, two-latitude correlation spectroscopy (2DCOS) technique was applied to the excitation loadings data. Interestingly, not all the fluorophore in a PARAFAC component change in the same direction as the overall change of a component. From upstream to downstream, the peak A1 in PARAFAC component C1 showed a downward trend, but peak A2 presented an upward trend. In PARAFAC component C2, the peak T2 and peak T3 showed an inverse changing trend under latitude perturbation. Furthermore, basic nutrients parameters in Heilongjiang were also characterized in each sampling sites. The relationships between DOM and nutrients showed that component C1 made a significant contribution to chemical oxygen demand (COD) and biochemical oxygen demand (BOD5). The evolutions of DOM peak A1 and peak A2 were accompanied by the changing of Total phosphorus (TP). The findings in this study could make a contribution to explore the fate of DOM in high humic-like substance containing river.


Assuntos
Matéria Orgânica Dissolvida , Ecossistema , Espectrometria de Fluorescência/métodos , Rios/química , Análise da Demanda Biológica de Oxigênio , Análise Fatorial , Substâncias Húmicas/análise
3.
J Environ Manage ; 360: 121145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788406

RESUMO

Phosphorus (P) is one of the essential nutrient elements for plant growth and development. Sludge compost products can be used as an important source of soil P to solve the shortage of soil P. The difference in the initial carbon-to-phosphorus ratio (C/P) will lead to difference in the bacterial community, which would affect the biological pathway of P conversion in composting. However, few studies have been reported on adjusting the initial C/P of composting to explore P conversion. Therefore, this study investigated the response of P component transformations, bacterial community and P availability to C/P during sludge composting by adjusting initial C/P. The results showed that increasing C/P promoted the mineralization of organic P and significantly increased the content of the labile P. High C/P also increased the relative content of available P, especially when the C/P was at 45 and 60, it reached 60.51% and 60.47%. High C/P caused differences in the community structure, and improved the binding ability of microbial network modules and the competitiveness of microbial communities. Additionally, high C/P strengthened the effect of microbial communities on the transformation of P components. Finally, the study showed that C/P was the main contributor to P content variation (64.7%) and indirectly affected P component conversion by affecting the microbial community. Therefore, adjusting the C/P is crucial to improve the P utilization rate of composting products.


Assuntos
Carbono , Compostagem , Fósforo , Esgotos , Solo , Fósforo/metabolismo , Fósforo/análise , Carbono/metabolismo , Solo/química , Microbiologia do Solo , Microbiota
4.
Int J Neurosci ; 132(1): 100-106, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32729769

RESUMO

BACKGROUND: Cerebral venous outflow obstruction involves idiopathic intracranial hypertension, and the most common related condition is dural venous sinus stenosis or, in other words, an obstruction of the dural venous sinuses. In these cases, the pathological process is often chronic, displays only mild symptoms, and rarely requires urgent surgical intervention. In this study, we present a unique case involving an acute cerebral venous outflow obstruction that occurred during meningioma resection that ultimately had catastrophic consequences. MATERIALS AND METHODS: The patient's preoperative imaging only revealed an unremarkable frontal convexity meningioma with an average diameter exceeding 8 cm. She was admitted for a scheduled right frontoparietal craniotomy for lesion resection. RESULTS: The patient's unique congenital dural venous sinus structure along with a non-surgical epidural hematoma both contributed to a catastrophic outcome, causing a progressive hemispheric encephalocele, significant blood loss, and wound closure difficulties. CONCLUSION: Neurosurgeons should place an additional focus on cerebral venous outflow patency during tumor resection, even if the tumor does not involve the transverse or sigmoid sinuses. It is well known that the tacking sutures play an essential role in preventing an epidural hematoma, but the procedure to mitigate hematomas occurring outside the surgical field of view is not fully recognized by neurosurgeons. If dural tacking sutures are placed after complete tumor resection, the prophylactic effect for preventing EDH in the non-surgical areas may not be guaranteed. Therefore, we strongly advocate for the tacking sutures to be accurately placed before dural incisions are made.


Assuntos
Veias Cerebrais/fisiopatologia , Transtornos Cerebrovasculares/fisiopatologia , Hematoma Epidural Craniano/etiologia , Neoplasias Meníngeas/cirurgia , Meningioma/cirurgia , Procedimentos Neurocirúrgicos/efeitos adversos , Adulto , Veias Cerebrais/anatomia & histologia , Feminino , Humanos , Procedimentos Neurocirúrgicos/normas
5.
Toxicol Pathol ; 44(1): 88-97, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26704929

RESUMO

Dibromoacetic acid (DBAA), a haloacetic acid found in drinking water as a disinfection by-product, can cause many adverse effects, including immunotoxicity. In a previous study, we confirmed that DBAA can induce obvious immunotoxicity in mice but that the underlying mechanisms are not clearly understood. In our current study, we confirmed that DBAA induced cytotoxicity and apoptosis in thymocytes isolated from mice by a range of DBAA concentrations (0, 5, 10, 20, or 40 µM). The data showed that DBAA exposure led to a significant decrease in proliferative responses to T-cell mitogens and obvious inhibition in the production of cytokines interleukin-2 and interleukin-4. We found obvious morphological changes of apoptosis in thymocytes and observed the percentage of apoptotic thymocytes to increase significantly as the DBAA concentration increased. Further investigation showed that DBAA can cause G0/G1 arrest in cell cycle analysis, increase intracellular calcium ([Ca(2+)]i) levels, increase the expression of Fas/FasL proteins, and decrease the expression of Bcl-2 protein. It is concluded that in vitro exposure to DBAA can lead to marked cytotoxicity and apoptosis among thymocytes, and the mechanism involved is strongly related to blocking cell cycle progression, increasing intracellular calcium, and increasing Fas/FasL expressions.


Assuntos
Acetatos/toxicidade , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteína Ligante Fas/metabolismo , Timócitos/efeitos dos fármacos , Animais , Cálcio/análise , Espaço Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos
6.
Ecotoxicol Environ Saf ; 130: 214-23, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27128506

RESUMO

Trace metals (TMs) within urban public transportation systems have rarely been studied and information on related health risks is scant. This study measured TM (arsenic, chromium, cadmium, nickel, zinc, copper and lead) concentrations in resuspended fractions of settled bus dust in Harbin, China, and estimated the exposure and health risks. The incremental lifetime cancer risk (ILCR) for commuters was estimated for TM exposures. The average concentration of total TMs was 559µg/g (ranges from 312 to 787) among 45 bus routes in Harbin. The hazard quotient of three selected commuter groups increased in the following order: teenagersdermal contact>inhalation.


Assuntos
Poeira/análise , Exposição por Inalação/análise , Metais/análise , Veículos Automotores , Neoplasias/epidemiologia , Adolescente , Adulto , Fatores Etários , Arsênio/análise , Cádmio/análise , Criança , China/epidemiologia , Cromo/análise , Cobre/análise , Ingestão de Alimentos , Humanos , Chumbo/análise , Níquel/análise , Medição de Risco , Pele/química , Adulto Jovem , Zinco/análise
7.
Environ Monit Assess ; 188(2): 113, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26803662

RESUMO

The bioavailabilities of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) were examined in eight sampling stations of the Heilongjiang watershed, located in Heilongjiang Province, northeast China. Water samples were incubated for 55 days at 20 °C, and the decreases in the DOC and DON concentrations were measured during the laboratory incubations. The experiments showed that bioavailable DOC (BDOC) accounted for 15-30% of DOC and bioavailable DON (BDON) accounted for 29-57% of DON. DOM bioavailability was higher for DON compared to DOC, suggesting that DON was more bioavailable and had a faster turnover than DOC in the Heilongjiang watershed. Furthermore, the percent of bioavailable DOC (%BDOC) was significantly related to SUVA254, not the DOC concentration, suggesting that the chemistry composition of DOM played a more important role in affecting its bioavailability compared to the DOM concentration. In addition, significant negative correlations were observed between the initial DOC/DON ratios and the percent of bioavailable DOM fractions (%BDOC and %BDON), especially for %BDON, implying that low C/N molecules or N-rich compounds may be preferentially utilized by microbes. Graphical Abstract DOC concentrations of eight sampling sites, microbial decomposition of DOC over 55 days, % bioavailable DOC of eight sampling sites, DOM chemical composition of eight sampling sites, demonstrated chemical composition influence on DOM bioavailability.


Assuntos
Carbono/análise , Monitoramento Ambiental , Nitrogênio/análise , Poluentes Químicos da Água/análise , China
8.
Front Plant Sci ; 15: 1300683, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529062

RESUMO

Rational fertilization is the main measure to improve crop yield, but there are differences in the optimal effects of nitrogen (N), phosphorus (P) and potassium (K) rationing exhibited by the same crop species in different regions and soil conditions. In order to determine the optimum fertilization ratio for high yield of Sapindus mukorossi in western Fujian to provide scientific basis. We carried out the experimental design with different ratios of N, P and K to investigate the effects of fertilization on the yield. and leaf physiology of Sapindus mukorossiand soil properties. Results showed that the yield of Sapindus mukorossi reached the highest value (1464.58 kg ha-1) at N2P2K2 treatment, which increased to 1056.25 kg ha-1 compared with the control. There were significant differences in the responses of soil properties and leaf physiological factors to fertilization treatments. Factor analysis showed that the integrated scores of soil factors and leaf physiological characteristic factors of Sapindus mukorossi under N2P2K2 fertilization treatment were the highest, which effectively improved the soil fertility and leaf physiological traits. The yield of Sapindus mukorossi showed a highly significant linear positive correlation with the integrated scores (r=0.70, p<0.01). Passage analysis showed that soil available nitrogen content, organic carbon content, and leaf area index were the key main factors to affect the yield. RDA showed that soil organic carbon and available phosphorus were the most important factors to affect leaf physiological traits. We recommend that the optimum fertilization ratio of Sapindus mukorossi was 0.96Kg N, 0.80Kg P and 0.64Kg K per plant. Reasonable fertilization can improve soil fertility and leaf physiological traits, while excessive fertilization has negative effects on soil fertility, leaf physiology and yield. This study provides theoretical support for scientific cultivation of woody oil seed species.

9.
Int J Biol Macromol ; 246: 125633, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406903

RESUMO

Poplar is an important tree species for ecological protection, wood production, bioenergy and urban greening; it has been widely planted worldwide. However, the catkin fibers produced by female poplars can cause environmental pollution and safety hazards during spring. This study focused on Populus tomentosa, and revealed the sucrose metabolism regulatory mechanism of catkin fibers development from morphological, physiological and molecular aspects. Paraffin section suggested that poplar catkin fibers were not seed hairs and produced from the epidermal cells of funicle and placenta. Sucrose degradation via invertase and sucrose synthase played the dominant role during poplar catkin fibers development. The expression patterns revealed that sucrose metabolism-related genes played important roles during catkin fibers development. Y1H analysis indicated that there was a potential interaction between sucrose synthase 2 (PtoSUS2)/vacuolar invertase 3 (PtoVIN3) and trichome-regulating MYB transcription factors in poplar. Finally, the two key genes, PtoSUS2 and PtoVIN3, had roles in Arabidopsis trichome density, indicating that sucrose metabolism is important in poplar catkin fibers development. This study is not only helpful for clarifying the mechanism of sucrose regulation during trichome development in perennial woody plants, but also establishes a foundation to solve poplar catkin fibers pollution through genetic engineering methods.

10.
Bioresour Technol ; 359: 127472, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35714775

RESUMO

This study aimed to explore the mechanism of actinomycetes inoculation to promote humification based on spectroscopy during straw waste composting. Results showed that inoculating actinomycetes could significantly increase the humification index and humification ratio, which were 2.53% and 21.79% respectively (P < 0.05). A spectroscopic analysis suggested that actinomycetes promoted the relative content of complex components of humic acid and reshaped the structural distribution of two sub fluorescence peaks in it. Furthermore, variance partitioning analysis demonstrated that compared with the intensity, the high-quality uniform distribution of fluorescence peaks had a greater contribution to the improvement of humification. In addition, structural equation model further verified that actinomycetes inoculation promoted the transformation of fulvic acid to humic acid, and then promoted the formation of humic acid. Therefore, actinomycetes inoculation can promote the humification of straw compost by reshaping the complex components of humic acid.


Assuntos
Actinobacteria , Inoculantes Agrícolas , Compostagem , Substâncias Húmicas/análise , Solo , Análise Espectral
11.
Bioresour Technol ; 360: 127579, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35798167

RESUMO

Metabolites of shikimic acid (SA) pathway can be used as humic substance (HS) precursors. Due to the complexity of SA anabolism, there were few studies on SA pathway during composting. The aim of this study was to identify the key drivers of SA pathway during different materials composting. During composting, the SA, protocatechuic acid (PA) and gallic acid (GA) decreased by 57.09%, 72.27% and 54.04% on average, respectively. The structural equation model showed that SA had key driving factors (organic matter and pH) during lawn waste composting. In addition, the complexity of material structure was the main factor affecting PA driving factors. The factors and degree of influence on GA varied with different materials. Accordingly, this study provided theoretical support for the improvement of SA metabolic intensity by single material and mixed material composting, and further provided a new direction for future HS research.


Assuntos
Compostagem , Substâncias Húmicas , Esterco , Ácido Chiquímico , Solo
12.
Environ Pollut ; 294: 118624, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864104

RESUMO

Heavy metal pollution was the main risk during livestock manures composting, in which microorganisms played a vital role. However, response strategies of microbial community to heavy metals stress (HMS) remained largely unclear. Therefore, the objective of this study was to reveal the ecological adaptation and counter-effect of bacterial community under HMS during chicken manures composting, and evaluating environmental implications of HMS on composting. The degradation of organic matters (more than 6.4%) and carbohydrate (more than 19.8%) were enhanced under intense HMS, suggesting that microorganisms could quickly adapt to the HMS to ensure smooth composting. Meanwhile, HMS increased keystone nodes and strengthened significant positive correlation relationships between genera (p < 0.05), indicating that bacteria resisted HMS through cooperating during composting. In addition, different bacterial groups performed various functions to cope with HMS. Specific bacterial groups responded to HMS, and certain groups regulated bacterial networks. Therefore, bacterial community had the extraordinary potential to deal with HMS and guarantee chicken manures composting even in the presence of high concentrations of heavy metals.


Assuntos
Compostagem , Metais Pesados , Microbiota , Animais , Galinhas , Esterco , Metais Pesados/análise , Solo
13.
Chemosphere ; 295: 133923, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35143859

RESUMO

Dissolved organic matter (DOM) plays a vital role in the biogeochemistry of aquatic ecosystems. However, the mechanisms of DOM cycling in the water column during different seasons have not been fully elucidated to date. The differences in DOM degradation in summer, autumn, and winter water columns were evaluated in this study. The results showed that bacteria played an essential role in the degradation of DOM in the summer water column. Photochemical degradation was the primary degradation pathway of DOM in the autumn and winter water columns. Notably, while DOM is degraded, photosynthetic bacteria produce organic matter through photosynthesis to replenish the water column. EEM-PARAFAC analysis indicated more tryptophan component C1 in summer, but the contents of humic substance component C2 and terrestrial substance C3 were higher in autumn and winter. In summer, more tryptophan-like components were consumed by bacteria, and Cyanobacteria produced more organic matter through photosynthesis to replenish the water column. Moreover, a similar bacterial community structure and a more active tryptophan biosynthesis pathway were found in autumn and winter. Random forest models identified representative bacteria involved in the DOM transformation process in different seasons. The above findings may be helpful to explore the degradation characteristics of DOM in different seasons and predict the fate of DOM in the water column in the future.


Assuntos
Cianobactérias , Rios , Matéria Orgânica Dissolvida , Ecossistema , Substâncias Húmicas/análise , Fotólise , Fotossíntese , Rios/química , Espectrometria de Fluorescência
14.
J Agric Food Chem ; 70(23): 7095-7109, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35638867

RESUMO

Soapberry (Sapindus mukorossi Gaertn.) pericarps are rich in valuable bioactive triterpenoid saponins. However, the saponin content dynamics and the molecular regulatory network of saponin biosynthesis in soapberry pericarps remain largely unclear. Here, we performed combined metabolite profiling and transcriptome analysis to identify saponin accumulation kinetic patterns, investigate gene networks, and characterize key candidate genes and transcription factors (TFs) involved in saponin biosynthesis in soapberry pericarps. A total of 54 saponins were tentatively identified, including 25 that were differentially accumulated. Furthermore, 49 genes putatively involved in sapogenin backbone biosynthesis and some candidate genes assumed to be responsible for the backbone modification, including 41 cytochrome P450s and 45 glycosyltransferases, were identified. Saponin-specific clusters/modules were identified by Mfuzz clustering and weighted gene coexpression network analysis, and one TF-gene regulatory network underlying saponin biosynthesis was proposed. The results of yeast one-hybrid assay and electrophoretic mobility shift assay suggested that SmbHLH2, SmTCP4, and SmWRKY27 may play important roles in the triterpenoid saponin biosynthesis by directly regulating the transcription of SmCYP71D-3 in the soapberry pericarp. Overall, these findings provide valuable information for understanding the molecular regulatory mechanism of saponin biosynthesis, enriching the gene resources, and guiding further research on triterpenoid saponin accumulation in soapberry pericarps.


Assuntos
Sapindus , Saponinas , Triterpenos , Perfilação da Expressão Gênica , Metaboloma , Sapindus/genética , Sapindus/metabolismo , Saponinas/genética , Transcriptoma , Triterpenos/metabolismo
15.
Front Plant Sci ; 13: 857993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685004

RESUMO

Sapindus is an important forest tree genus with utilization in biodiesel, biomedicine, and it harbors great potential for biochemical engineering applications. For advanced breeding of Sapindus, it is necessary to evaluate the genetic diversity and construct a rationally designed core germplasm collection. In this study, the genetic diversity and population structure of Sapindus were conducted with 18 expressed sequence tag-simple sequence repeat (EST-SSR) markers in order to establish a core germplasm collection from 161 Sapindus accessions. The population of Sapindus showed high genetic diversity and significant population structure. Interspecific genetic variation was significantly higher than intraspecific variation in the Sapindus mukorossi, Sapindus delavayi, and combined Sapindus rarak plus Sapindus rarak var. velutinus populations. S. mukorossi had abundant genetic variation and showed a specific pattern of geographical variation, whereas S. delavayi, S. rarak, and S. rarak var. velutinus showed less intraspecific variation. A core germplasm collection was created that contained 40% of genetic variation in the initial population, comprising 53 S. mukorossi and nine S. delavayi lineages, as well as single representatives of S. rarak and S. rarak var. velutinus. These results provide a germplasm basis and theoretical rationale for the efficient management, conservation, and utilization of Sapindus, as well as genetic resources for joint genomics research in the future.

16.
Front Plant Sci ; 13: 1037784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699854

RESUMO

Triterpenoid saponin are important secondary metabolites and bioactive constituents of soapberry (Sapindus mukorossi Gaertn.) and are widely used in medicine and toiletry products. However, little is known about the roles of miRNAs in the regulation of triterpenoid saponin biosynthesis in soapberry. In this study, a total of 3036 miRNAs were identified, of which 1372 miRNAs were differentially expressed at different stages of pericarp development. Important KEGG pathways, such as terpenoid backbone biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, and basal transcription factors were highlighted, as well the roles of some key miRNAs, such as ath-miR5021, han-miR3630-3p, and ppe-miR858, which may play important roles in regulating triterpenoid saponin biosynthesis. In addition, 58 miRNAs might participate in saponin biosynthesis pathways by predicting the targets of those miRNAs to 53 saponin biosynthesis structural genes. And 75 miRNAs were identified to potentially play vital role in saponin accumulation by targeting transcript factor genes, bHLH, bZIP, ERF, MYB, and WRKY, respectively, which are candidate regulatory genes in the pathway of saponin biosynthesis. The results of weighted gene coexpression network analysis (WGCNA) suggested that two saponin-specific miRNA modules and 10 hub miRNAs may participate in saponin biosynthesis. Furthermore, multiple miRNA-mRNA regulatory networks potentially involved in saponin biosynthesis were generated, e.g., ath-miR5021-SmIDI2/SmGPS5/SmbAS1/SmCYP71D-3/SmUGT74G-2, han-miR3630-3p-SmCYP71A-14/SmbHLH54/SmMYB135/SmWRKY32, and ppe-miR858-SmMYB5/SmMYB32. qRT-PCR analysis validated the expression patterns of nine miRNAs and 12 corresponding target genes. This study represents the first comprehensive analysis of miRNAs in soapberry and lays the foundation for further understanding of miRNA-based regulation in triterpenoid saponin biosynthesis.

17.
Exp Ther Med ; 22(1): 785, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34055084

RESUMO

The present study aimed to investigate the protective effects of etomidate on hyperoxia-induced acute lung injury in mice, particularly on the nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. Fifty specific pathogen-free mice were randomly divided into the blank control, model, high oxygen exposure + low etomidate dose (0.3 mg·kg-1), a high oxygen exposure + moderate etomidate dose (3 mg·kg-1), and a high oxygen exposure + high etomidate dose (10 mg·kg-1) groups, with ten mice allotted per group. After 72 h, the mice were sacrificed and the lung tissues were harvested, and the wet-to-dry (W/D) ratio of the tissues was calculated. Hematoxylin-eosin staining was performed to observe the pathological changes in the lung tissues, and the lung injury score (LIS) was calculated. The mRNA and protein expression levels of Nrf2 and HO-1 were measured. The malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) levels were also measured, and interleukin (IL)-1ß, IL-6, tumor necrosis factor alpha (TNF-α) and IL-10 concentrations in the bronchoalveolar lavage fluid were determined. At low and moderate doses, etomidate decreased pathological damage in the lung tissue, decreased the LIS and W/D ratio, upregulated Nrf2 and HO-1 mRNA and protein expression, decreased IL-1ß, IL-6, and TNF-α concentrations, increased MPO activity and IL-10 levels, suppressed the production of the oxidation product MDA, and enhanced the activities of the antioxidant enzymes CAT and SOD. Within a certain dose range, etomidate enhanced antioxidant and anti-inflammatory effects in mice, thereby decreasing lung injury induced by the chronic inhalation of oxygen at high concentrations. Furthermore, the underlying mechanism may be associate with the upregulation of the Nrf2/HO-1 signaling pathway.

18.
Bioresour Technol ; 342: 125901, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34555754

RESUMO

Denitrification during composting is a hidden danger that causes environmental pollution risk and aromatic humic substance damage, which needs to be better regulate urgently. In this study, two denitrification regulation methods, moisture and biochar amendment, were conducted during chicken manure composting. Denitrification performance data showed two regulation methods obviously reduced NO3--N, NO2--N and N2 contents. Humic substance increased by 25.3 % and 29.1 % under two regulations. Microbiological analysis indicated that two regulation methods could decreasing denitrifying functional microbes with aroma degradation capability. Subsequently, denitrification gene narG, nirS, nosZ were significantly inhibited (p < 0.05) and the aromatic degradation metabolism pathways were down-regulated. Correlation analysis further revealed the important influence of interspecific interactions and non-biological characteristics on functional microbes. These results provided important scientific basis to denitrification regulation in the practice of composting, which achieved the purpose of simultaneously controlling environmental pollution risk and conducing end-product formation.


Assuntos
Compostagem , Desnitrificação , Poluição Ambiental , Substâncias Húmicas , Esterco , Solo
19.
Bioresour Technol ; 319: 124121, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32957045

RESUMO

The study aimed to identify the preference of pathways of humus formation. Five lab-scale composting experiments were established: the control (CK), montmorillonite addition (M), illite addition (I), thermal treatment montmorillonite addition (M-) and thermal treatment illite addition (I-). Results showed humus content was increased by 11.5%, 39.3%, 37.2%, 30.9% and 27.6% during CK, M-, M, I- and I composting. Meanwhile, Redundancy analysis indicated the bands of bacteria community related to humic acid (HA) were more abundant in the M- and I- treatments. Furthermore, structural equation model and variance partitioning analysis demonstrated that M- and I- treatments promoted precursors to synthesize HA by coordinated regulation of biotic pathway and abiotic pathway, the increase of HA in the M and I treatments mainly through the abiotic pathway. In summary, an effective method was proposed to improve humus production by adjusting the preference of biotic and abiotic pathways of humus formation.


Assuntos
Compostagem , Animais , Bentonita , Galinhas , Substâncias Húmicas , Esterco , Minerais , Solo
20.
Sci Rep ; 11(1): 11657, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34079016

RESUMO

Soapberry (Sapindus mukorossi Gaertn.) is a multi-functional tree with widespread application in toiletries, biomedicine, biomass energy, and landscaping. The pericarp of soapberry can be used as a medicine or detergent. However, there is currently no systematic study on the chemical constituents of soapberry pericarp during fruit development and ripening, and the dynamic changes in these constituents still unclear. In this study, a non-targeted metabolomics approach using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was used to comprehensively profile the variations in metabolites in the soapberry pericarp at eight fruit growth stages. The metabolome coverage of UHPLC-HRMS on a HILIC column was higher than that of a C18 column. A total of 111 metabolites were putatively annotated. Principal component analysis and hierarchical clustering analysis of pericarp metabolic composition revealed clear metabolic shifts from early (S1-S2) to late (S3-S5) development stages to fruit ripening stages (S6-S8). Furthermore, pairwise comparison identified 57 differential metabolites that were involved in 18 KEGG pathways. Early fruit development stages (S1-S2) were characterized by high levels of key fatty acids, nucleotides, organic acids, and phosphorylated intermediates, whereas fruit ripening stages (S6-S8) were characterized by high contents of bioactive and valuable metabolites, such as troxipide, vorinostat, furamizole, alpha-tocopherol quinone, luteolin, and sucrose. S8 (fully developed and mature stage) was the most suitable stage for fruit harvesting to utilize the pericarp. To the best of our knowledge, this was the first metabolomics study of the soapberry pericarp during whole fruit growth. The results could offer valuable information for harvesting, processing, and application of soapberry pericarp, as well as highlight the metabolites that could mediate the biological activity or properties of this medicinal plant.


Assuntos
Frutas/química , Redes e Vias Metabólicas/fisiologia , Metaboloma , Metabolômica/métodos , Sapindus/química , Ácidos Carboxílicos/classificação , Ácidos Carboxílicos/isolamento & purificação , Ácidos Carboxílicos/metabolismo , Cromatografia Líquida de Alta Pressão , Ácidos Graxos/classificação , Ácidos Graxos/isolamento & purificação , Ácidos Graxos/metabolismo , Flavonas/classificação , Flavonas/isolamento & purificação , Flavonas/metabolismo , Frutas/metabolismo , Nucleotídeos/classificação , Nucleotídeos/isolamento & purificação , Nucleotídeos/metabolismo , Análise de Componente Principal , Quinonas/classificação , Quinonas/isolamento & purificação , Quinonas/metabolismo , Sapindus/metabolismo , Saponinas/classificação , Saponinas/isolamento & purificação , Saponinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa