Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Cell ; 167(6): 1511-1524.e10, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27884405

RESUMO

Zika virus (ZIKV) persists in the semen of male patients, a first for flavivirus infection. Here, we demonstrate that ZIKV can induce inflammation in the testis and epididymidis, but not in the prostate or seminal vesicle, and can lead to damaged testes after 60 days post-infection in mice. ZIKV induces innate immune responses in Leydig, Sertoli, and epididymal epithelial cells, resulting in the production of pro-inflammatory cytokines/chemokines. However, ZIKV does not induce a rapid and abundant cytokine production in peritubular cell and spermatogonia, suggesting that these cells are vulnerable for ZIKV infection and could be the potential repositories for ZIKV. Our study demonstrates a correlation between ZIKV and testis infection/damage and suggests that ZIKV infection, under certain circumstances, can eventually lead to male infertility.


Assuntos
Infertilidade Masculina/virologia , Testículo/virologia , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Citocinas/metabolismo , Epididimo/patologia , Epididimo/virologia , Humanos , Infertilidade Masculina/patologia , Masculino , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor de Interferon alfa e beta/genética , Testículo/patologia , Internalização do Vírus , Zika virus/isolamento & purificação , Infecção por Zika virus/patologia , Infecção por Zika virus/transmissão , Receptor Tirosina Quinase Axl
3.
Proc Natl Acad Sci U S A ; 121(23): e2317790121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814866

RESUMO

The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) is a recognized resistance mechanism and a hindrance to therapies using epidermal growth factor receptor tyrosine kinase inhibitors (TKIs). The paucity of pretranslational/posttranslational clinical samples limits the deeper understanding of resistance mechanisms and the exploration of effective therapeutic strategies. Here, we developed preclinical neuroendocrine (NE) transformation models. Next, we identified a transcriptional reprogramming mechanism that drives resistance to erlotinib in NE transformation cell lines and cell-derived xenograft mice. We observed the enhanced expression of genes involved in the EHMT2 and WNT/ß-catenin pathways. In addition, we demonstrated that EHMT2 increases methylation of the SFRP1 promoter region to reduce SFRP1 expression, followed by activation of the WNT/ß-catenin pathway and TKI-mediated NE transformation. Notably, the similar expression alterations of EHMT2 and SFRP1 were observed in transformed SCLC samples obtained from clinical patients. Importantly, suppression of EHMT2 with selective inhibitors restored the sensitivity of NE transformation cell lines to erlotinib and delayed resistance in cell-derived xenograft mice. We identify a transcriptional reprogramming process in NE transformation and provide a potential therapeutic target for overcoming resistance to erlotinib.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Transformação Celular Neoplásica , Cloridrato de Erlotinib , Neoplasias Pulmonares , Humanos , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Camundongos , Cloridrato de Erlotinib/farmacologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Resistencia a Medicamentos Antineoplásicos/genética , Via de Sinalização Wnt/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Transcrição Gênica , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase
4.
Br J Cancer ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951697

RESUMO

BACKGROUND: DNMT3A is a crucial epigenetic regulation enzyme. However, due to its heterogeneous nature and frequent mutation in various cancers, the role of DNMT3A remains controversial. Here, we determine the role of DNMT3A in non-small cell lung cancer (NSCLC) to identify potential treatment strategies. METHODS: To investigate the role of loss-of-function mutations of DNMT3A in NSCLC, CRISPR/Cas9 was used to induce DNMT3A-inactivating mutations. Epigenetic inhibitor library was screened to find the synthetic lethal partner of DNMT3A. Both pharmacological inhibitors and gene manipulation were used to evaluate the synthetic lethal efficacy of DNMT3A/KDM1A in vitro and in vivo. Lastly, MS-PCR, ChIP-qPCR, dual luciferase reporter gene assay and clinical sample analysis were applied to elucidate the regulation mechanism of synthetic lethal interaction. RESULTS: We identified DNMT3A is a tumour suppressor gene in NSCLC and KDM1A as a synthetic lethal partner of DNMT3A deletion. Both chemical KDM1A inhibitors and gene manipulation can selectively reduce the viability of DNMT3A-KO cells through inducing cell apoptosis in vitro and in vivo. We clarified that the synthetic lethality is not only limited to the death mode, but also involved into tumour metastasis. Mechanistically, DNMT3A deficiency induces KDM1A upregulation through reducing the methylation status of the KDM1A promoter and analysis of clinical samples indicated that DNMT3A expression was negatively correlated with KDM1A level. CONCLUSION: Our results provide new insight into the role of DNMT3A in NSCLC and elucidate the mechanism of synthetic lethal interaction between KDM1A and DNMT3A, which might represent a promising approach for treating patients with DNMT3A-deficient tumours.

5.
Toxicol Appl Pharmacol ; 483: 116807, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38199493

RESUMO

N6-methyladenosine (m6A) is the most prevalent mRNA modification, and it is verified to be closely correlated with cancer occurrence and progression. The m6A demethylase ALKBH5 (alkB homolog 5) is dysregulated in various cancers. However, the role and underlying mechanism of ALKBH5 in the pathogenesis and especially the chemo-resistance of non-small cell lung cancer (NSCLC) is poorly elucidated. The current study shows that ALKBH5 expression is reduced in paclitaxel (PTX) resistant NSCLC cells and down-regulation of ALKBH5 usually implies poor prognosis of NSCLC patients. Over-expression of ALKBH5 in PTX-resistant cells can suppress cell proliferation and enhance chemo-sensitivity, while knockdown of ALKBH5 exerts the opposite effect, which further supports the tumor suppressive role of ALKBH5. Over-expression of ALKBH5 can also reverse the epithelial-mesenchymal transition (EMT) process in PTX-resistant cancer cells. Mechanistically, data from RNA-seq, real-time PCR and western blotting indicate that CEMIP (cell migration inducing hyaluronidase 1), also known as KIAA1199, may be the downstream target of ALKBH5. Furthermore, ALKBH5 negatively regulates the CEMIP level by reducing the stability of CEMIP mRNA. Collectively, the current data demonstrate that the ALKBH5/CEMIP axis modulates the EMT process in NSCLC, which in turn regulates the chemo-sensitivity of cancer cells to PTX.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Paclitaxel/farmacologia , RNA Mensageiro/metabolismo
6.
Langmuir ; 40(22): 11571-11581, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38779964

RESUMO

3D aerogels incorporating functionalized reduced graphene oxide (SUL/rGO) were prepared as a hydrothermal method utilizing graphene oxide (GO) and a sulfonyldibenzene derivative (SUL) as raw materials. The aromatic compound SUL, which contains hydroxyl and sulfonyl groups, was bonded to reduced graphene oxide (rGO) through π-π connections. The obtained composite material exhibited porosity within its structure with improved hydrophilicity, along with excellent electrochemical characteristics. This improvement was ascribed to the specific rGO structure, as well as the pseudocapacitance inherent in SUL, both of which synergistically contribute to improvement in the characteristics of the prepared electrode materials. Also, an analysis was performed employing density functional theory from which the density of states and adsorption energy of SUL on the surface of rGO were computed to further investigate the charge storage process within the prepared composite. The prepared SUL/rGO-2 electrode exhibited the highest specific capacitance value of 388 F/g at a current density equal to 1 A/g. The constructed symmetrical supercapacitor, SUL/rGO-2//SUL/rGO-2, attained an energy density value of 14.55 Wh/kg at a power density equal to 350 W/kg with an exceptional galvanostatic charge-discharge (GCD) cyclic stability equal to 91% following 10 000 cycles. Therefore, this review presents a novel functionalized graphene-based material incorporating hydroxyl and sulfonyl groups, which holds promise in future energy storage applications.

7.
Environ Toxicol ; 39(1): 212-227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37676907

RESUMO

Circ_UBAP2 is extensively engaged in regulating the development of various malignancies, containing osteosarcoma (OS). However, its biological significance and function are not fully understood. In this study, we found that circ_UBAP2 and HMGA1 levels were up-regulated, and miR-370-3p and miR-665 expressions were decreased in osteosarcoma tissues. Inhibition of circ_UBAP2 or HMGA1 expression in OS cells, cell viability, invasion and migration abilitities were notably hindered, and cell apoptosis abilities were increased. Bioinformatics analysis predicted that miR-665 and miR-370-3p were the downstream targets of circ_UBAP2, and the dual luciferase experiment demonstrated the correlation between them. In addition, inhibition of miR-665 and miR-370-3p expression could significantly reverse the impact of knocking down circ_UBAP2 on OS cells. HMGA1 was discovered to become the downstream target of both miR-665 and miR-370-3p. It was shown that over-expression of miR-665 or miR-370-3p notably stimulated the cell growth, invasion, and migration of osteosarcoma cells, while hindered cell apoptosis. Nevertheless, this effect could be reversed by concurrent over-expression of HMGA1. Our data strongly prove that circ_UBAP2 makes a vital impact on promoting the proliferation, invasion as well as migration of osteosarcoma cells via down-regulating the level of miR-665 and miR-370-3p, and later up-regulating the level of HMGA1. In conclusion, circ_UBAP2 is upregulated in osteosarcoma, and it competitively adsorbs miR-370-3p and miR-665, resulting in up-regulation of HMGA1, thus promoting OS development.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína HMGA1a/genética , Linhagem Celular Tumoral , Osteossarcoma/metabolismo , Fatores de Transcrição , Neoplasias Ósseas/patologia , Proliferação de Células/genética , Movimento Celular/genética
8.
J Med Virol ; 95(2): e28470, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606602

RESUMO

Due to the COVID-19 pandemic, a series of sequelae, such as fatigue, tachypnea, and ageusia, appeared in long COVID patients, but the pathological basis was still uncertain. The targeted radiopharmaceuticals were of potential to systemically and dynamically trace the pathological changes. For the key ACE2 protein in the virus-host interaction, 68 Ga-cyc-DX600 was developed on the basis of DX600 as a PET tracer of ACE2 fluctuation and maintained the ability in differentiating ACE and ACE2. In the temporary infection model inhaled with the radio-traceable pseudovirus in the upper respiratory tract of male humanized ACE2 (hACE2) mice, organ-specific ACE2 dysfunction in acute period and the following ACE2 recovery in a relatively long period was visualized and quantified by ACE2 PET, revealing a complex pattern of virus concentration-dependent degree and time period-dependent tendency of ACE2 recovery, mainly a sudden decrease of apparent ACE2 in the heart, liver, kidneys, lungs, and so on, but the liver was of a quick functional compensation on ACE2 expression after a temporary decrease. ACE2 expression of most organs has recovered to a normal level at 15 days post inhalation, with brain and genitals still of a decreased SUVACE2 ;  meanwhile, kidneys were of an increased SUVACE2 . These findings on ACE2 PET were further verified by western blot. When compared with high-resolution computed tomography on structural changes and FDG PET on glycometabolism, ACE2 PET was superior in an earlier diagnostic window during infection and more comprehensive understanding of functional dysfunction post-infection. In the respective ACE2 PET/CT and ACE2 PET/MR scans of a volunteer, the repeatability of SUVACE2 and the ACE2 specificity were further confirmed. In conclusion, 68 Ga-cyc-DX600 was developed as an ACE2-specific tracer, and the corresponding ACE2 PET revealed the dynamic patterns of functional ACE2 recovery and provided a reference and approach to explore the ACE2-related pathological basis of sequelae in long COVID.


Assuntos
COVID-19 , Masculino , Humanos , Camundongos , Animais , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2 , Síndrome de COVID-19 Pós-Aguda , Pandemias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
9.
Ecotoxicol Environ Saf ; 251: 114517, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36669278

RESUMO

Cadmium (Cd), as one of the seventh most toxic heavy metal pollutants, widely persisted in the environment, leading to osteoblast dysfunction and ultimately Cd-related skeletal disease. However, the damaging effects of Cd on cellular functions and the potential pathogenic mechanisms are still unclear. In our study, Cd is believed to induce mitochondrial dysfunction and endoplasmic reticulum stress (ERS) in a dose-dependent manner, thereby leading to apoptosis, as evident by elevated Drp1, Fis1, GRP78, CHOP, ATF4, P-EIF2α, P-PERK, BAX, cleaved caspase 3 proteins expression and ROS levels, and decreased the levels of Mfn2, OPA1, Bcl2, and intracellular Collagen I, B-ALP, RUNX2, and BGP genes. Additionally, when the exogenous addition of NAC and 4-PBA was added, it was found that NAC and 4-PBA had a positive moderating effect on Cd-induced cell dysfunction. Mechanistically, Cd-induced oxidative stress and apoptosis by upregulating the PERK-EIF2α-ATF4-CHOP signaling pathway and inhibiting the Nrf2/NQO1 pathway. In conclusion, we found that Cd was involved in mitochondrial dysfunction, ERS, and apoptosis in MC3T3-E1 cells, While NAC and 4-PBA relieved ERS and attenuated cell apoptosis.


Assuntos
Cádmio , Estresse do Retículo Endoplasmático , Cádmio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Apoptose
10.
Mol Cancer ; 21(1): 106, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477569

RESUMO

BACKGROUND: Lung cancer is a kind of malignancy with high morbidity and mortality worldwide. Paclitaxel (PTX) is the main treatment for non-small cell lung cancer (NSCLC), and resistance to PTX seriously affects the survival of patients. However, the underlying mechanism and potential reversing strategy need to be further explored. METHODS: We identified ALDH2 as a PTX resistance-related gene using gene microarray analysis. Subsequently, a series of functional analysis in cell lines, patient samples and xenograft models were performed to explore the functional role, clinical significance and the aberrant regulation mechanism of ALDH2 in PTX resistance of NSCLC. Furthermore, the pharmacological agents targeting ALDH2 and epigenetic enzyme were used to investigate the diverse reversing strategy against PTX resistance. RESULTS: Upregulation of ALDH2 expression is highly associated with resistance to PTX using in vitro and in vivo analyses of NSCLC cells along with clinicopathological analyses of NSCLC patients. ALDH2-overexpressing NSCLC cells exhibited significantly reduced PTX sensitivity and increased biological characteristics of malignancy in vitro and tumor growth and metastasis in vivo. EHMT2 (euchromatic histone lysine methyltransferase 2) inhibition and NFYA (nuclear transcription factor Y subunit alpha) overexpression had a cooperative effect on the regulation of ALDH2. Mechanistically, ALDH2 overexpression activated the RAS/RAF oncogenic pathway. NSCLC/PTX cells re-acquired sensitivity to PTX in vivo and in vitro when ALDH2 was inhibited by pharmacological agents, including the ALDH2 inhibitors Daidzin (DZN)/Disulfiram (DSF) and JIB04, which reverses the effect of EHMT2. CONCLUSION: Our findings suggest that ALDH2 status can help predict patient response to PTX therapy and ALDH2 inhibition may be a promising strategy to overcome PTX resistance in the clinic.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Aldeído-Desidrogenase Mitocondrial , Fator de Ligação a CCAAT/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Fatores de Transcrição
11.
Apoptosis ; 27(11-12): 1015-1030, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36107354

RESUMO

Taxane agents are of particular interest in non-small cell lung carcinomas (NSCLC) treatment, while multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) limits their clinical efficacy. TM2, a chemically semi-synthesized taxane derivative, exerted significant anti-cancer efficacy in vitro and in vivo, especially against vincristine-resistant and adriamycin-resistant cancer cells. In this study, the anti-cancer effect of TM2 on drug-resistant NSCLC was evaluated both in vitro and in vivo, and the mechanism underlying its anti-MDR activity was further clarified. It was found that TM2 was significantly cytotoxic to cisplatin- and paclitaxel-resistant A549 (human non-small cell lung cancer) cells that overexpressing P-gp, resulting in IC50 values of 0.19 µM and 0.12 µM. TM2 micelles (5 mg/kg, 10 mg/kg, 20 mg/kg, i.v., 21 days) inhibited the growth of MDR xenograft with the maximal inhibitory rate up to 80.4%. Moreover, TM2 caused cell cycle arrest in the G2-M phase and apoptosis in drug-resistant cells through promoting tubulin polymerization, which acted in a way similar to taxane agents. Notably, TM2 acted as a P-gp inhibitor with high binding affinity, which resulted in impaired efflux function through forming H-bonds and ATP hydrolysis to induce P-gp conformational alterations. These findings indicated that TM2 displays anti-MDR activity with the potential for the treatment of NSCLC, which can inhibit P-gp function and stabilize microtubule polymerization.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Polimerização , Resistencia a Medicamentos Antineoplásicos , Apoptose , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Resistência a Múltiplos Medicamentos , Taxoides/farmacologia , Taxoides/metabolismo , Taxoides/uso terapêutico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/uso terapêutico , Microtúbulos , Linhagem Celular Tumoral
12.
Small ; 18(35): e2202779, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35934891

RESUMO

Transition metal nanostructures are widely regarded as important catalysts to replace the precious metal Pt for hydrogen evolution reaction (HER) in water splitting. However, it is difficult to obtain uniform-sized and ultrafine metal nanograins through general high-temperature reduction and sintering processes. Herein, a novel method of chemical energy-driven lithiation is introduced to synthesize transition metal nanostructures. By taking advantage of the slow crystallization kinetics at room temperature, more surface and boundary defects can be generated and remained, which reduce the atomic coordination number and tune the electronic structure and adsorption free energy of the metals. The obtained Ni nanostructures therein exhibit excellent HER performance. In addition, the bimetal of Co and Ni shows better electrocatalytic kinetics than individual Ni and Co nanostructures, reaching 100 mA cm-2 at a low overpotential of 127 mV. The high HER performance originates from well-formed synergistic effect between Ni and Co by tuning the electronic structures. Density functional theory simulations confirm that the bimetallic NiCo possesses a low Gibbs free energy of hydrogen adsorption, which are conducive to enhance its intrinsic activity. This work provides a general strategy that enables simultaneous defect engineering and electronic modulation of transition metal catalysts to achieve an enhancement in HER performance.

13.
Small ; 18(15): e2105414, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35233944

RESUMO

Border-nearing microrobots with self-propelling and navigating capabilities have promising applications in micromanipulation and bioengineering, because they can stimulate the surrounding fluid flow for object transportation. However, ensuring the biosafety of microrobots is a concurrent challenge in bioengineering applications. Here, macrophage template-based microrobots (cell robots) that can be controlled individually or in chain-like swarms are proposed, which can transport various objects. The cell robots are constructed using the phagocytic ability of macrophages to load nanomagnetic particles while maintaining their viability. The robots exhibit high position control accuracy and generate a flow field that can be used to transport microspheres and sperm when exposed to an external magnetic field near a wall. The cell robots can also form chain-like swarms to transport a large object (more than 100 times the volume). This new insight into the manipulation of macrophage-based cell robots provides a new concept by converting other biological cells into microrobots for micromanipulation in biomedical applications.


Assuntos
Robótica , Campos Magnéticos , Micromanipulação , Microesferas
14.
Microb Pathog ; 168: 105597, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35605739

RESUMO

Many insects are capable of developing enhanced resistance in response to repeated infection with the same pathogen, which is defined "immune priming". However, little is known in housefly, an ideal insect model for studying immunity. Here, Candida albicans (C. albicans) was used as the pathogen to explore whether housefly larvae are capable of eliciting immune priming. Firstly, we found that 2nd-instar larvae pre-exposure to heat-killed C. albicans could confer protection upon re-infection with C. albicans, as evidenced by the survival rate was higher in C. albicans primed larvae. Moreover, the hemocyte density was increased by priming, but phenoloxidase (PO) activity was not affected. For this reason, RNA sequencing (RNA-seq) was performed and found that 145 genes were differentially expressed after priming, in which 22 genes were related to immune response. Then, KEGG enrichment showed that Toll signaling pathway and Phagosome signaling pathway, as well as many other signaling pathways were enriched. Finally, qPCR was performed and found that the expression of 2 pattern recognition receptor (PRR) genes (PGRP-SD-like precursor and lectin subunit alpha-like) and 6 immune effector genes (phormicin, cecropin-A2-like, defensin-1, attacin-A-like, sarcotoxin-1C and lysozyme 1-like) in C. albicans primed larvae was significantly up-regulated after challenge. Taken together, our findings suggested that housefly larvae are capable of eliciting immune priming against C. albicans, and cellular immunity as well as the gene expression, especially genes involved in Toll signaling pathway were induced by immune priming with C. albicans.


Assuntos
Moscas Domésticas , Animais , Candida albicans/genética , Expressão Gênica , Moscas Domésticas/genética , Imunidade Celular , Larva/genética
15.
Cancer Cell Int ; 22(1): 300, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36184588

RESUMO

OBJECTIVE: The incidence of non-virus-related hepatocellular carcinoma (NV-HCC) in hepatocellular carcinoma (HCC) is steadily increasing. The aim of this study was to establish a prognostic model to evaluate the overall survival (OS) of NV-HCC patients. METHODS: Overall, 261 patients with NV-HCC were enrolled in this study. A prognostic model was developed by using LASSO-Cox regression analysis. The prognostic power was appraised by the concordance index (C-index), and the time-dependent receiver operating characteristic curve (TD-ROC). Kaplan-Meier (K-M) survival analysis was used to evaluate the predictive ability in the respective subgroups stratified by the prognostic model risk score. A nomogram for survival prediction was established by integrating the prognostic model, TNM stage, and treatment. RESULTS: According to the LASSO-Cox regression results, the number of nodules, lymphocyte-to-monocyte ratio (LMR), prognostic nutritional index (PNI), alkaline phosphatase (ALP), aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio (SLR) and C-reactive protein (CRP) were included for prognostic model construction. The C-index of the prognostic model was 0.759 (95% CI 0.723-0.797) in the development cohort and 0.796 (95% CI 0.737-0.855) in the validation cohort, and its predictive ability was better than TNM stage and treatment. The TD-ROC showed similar results. K-M survival analysis showed that NV-HCC patients with low risk scores had a better prognosis (P < 0.05). A nomogram based on the prognostic model, TNM stage, and treatment was constructed with sufficient discriminatory power with C-indexes of 0.78 and 0.85 in the development and validation cohort, respectively. CONCLUSION: For NV-HCC, this prognostic model could predict an OS benefit for patients, which may assist clinicians in designing individualized therapeutic strategies.

16.
J Immunol ; 205(7): 1752-1762, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32868411

RESUMO

P2X7 receptor (P2X7R) is highly expressed on immune cells, triggering the release of cytokines and regulating autoimmune responses. To investigate P2X7R surface expression on T helper (Th) 1, Th17, and regulatory T (Treg) cells in patients with systemic lupus erythematosus (SLE) or rheumatoid arthritis (RA) and correlations with disease activity, 29 SLE and 29 RA patients and 18 healthy controls (HCs) were enrolled. We showed that SLE and RA patients had significantly higher levels of plasma cytokines (IFN-γ, IL-1ß, IL-6, IL-17A, and IL-23), frequencies of Th1 and Th17 cells, and expression of P2X7R on Th1 and Th17 than HCs, and the Th17/Treg ratio was significantly increased, whereas Treg cell levels were significantly decreased. The Ca2+ influx increase following BzATP stimulation was significantly higher in CD4+PBMCs from SLE and RA patients than in HCs. Blood levels of shed P2X7R were increased in SLE and RA patients. Furthermore, 28-joint Disease Activity Score and SLE Disease Activity Index score showed negative correlations with Treg cell levels and positive correlations with Th17/Treg ratio and Th17 cell P2X7R expression. Interestingly, Th17 cell P2X7R expression was closely correlated with IL-1ß, C-reactive protein, the erythrocyte sedimentation rate, anticyclic citrullinated peptide Abs, albumin, and C4. These data indicate that increased Th17 cell P2X7R expression is functionally and positively related to disease activity and some inflammatory mediators in SLE and RA patients, and P2X7R could be critical in promoting the Th17 immune response and contributing to the complex pathogenesis of SLE and RA.


Assuntos
Artrite Reumatoide/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Receptores Purinérgicos P2X7/metabolismo , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia , Doença Aguda , Adulto , Idoso , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Receptores Purinérgicos P2X7/genética
17.
J Nanobiotechnology ; 20(1): 364, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933359

RESUMO

BACKGROUND: Magnetosomes (BMPs) are organelles of magnetotactic bacteria (MTB) that are responsible for mineralizing iron to form magnetite. In addition, BMP is an ideal biomaterial that is widely used in bio- and nano-technological applications, such as drug delivery, tumor detection and therapy, and immunodetection. The use of BMPs to create multifunctional nanocomposites would further expand the range of their applications. RESULTS: In this study, we firstly demonstrate that the extracted BMP can remineralize in vitro when it is exposed to AgNO3 solution, the silver ions (Ag+) were transported into the BMP biomembrane (MM) and mineralized into a silver crystal on one crystal plane of Fe3O4. Resulting in the rapid synthesis of an Ag-Fe3O4 hybrid BMP (BMP-Ag). The synergy between the biomembrane, Fe3O4 crystal, and unmineralized iron enabled the remineralization of BMPs at an Ag+ concentration ≥ 1.0 mg mL-1. The BMP-Ag displayed good biocompatibility and antibacterial activity. At a concentration of 2.0 mg/mL, the BMP-Ag and biomembrane removed Ag-Fe3O4 NPs inhibited the growth of gram-negative and gram-positive bacteria. Thus using BMP-Ag as a wound dressing can effectively enhance the contraction of infected wounds. CONCLUSIONS: This study represents the first successful attempt to remineralize organelles ex vivo, realizing the biosynthesis of hybrid BMP and providing an important advancement in the synthesis technology of multifunctional biological nanocomposites.


Assuntos
Magnetossomos , Óxido Ferroso-Férrico/química , Bactérias Gram-Negativas , Ferro/química , Magnetossomos/química , Prata/química
18.
J Invertebr Pathol ; 194: 107802, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35931179

RESUMO

Many entomopathogens regulate the development of their insect hosts. However, the influence of mermithid nematodes on the development of their host remains unclear. In the current study, we provide insights into how Ovomermis sinensis parasitism affects the development of Helicoverpa armigera. We observed that O. sinensis arrests host development, as evidenced by the reduced body size and failure of Helicoverpa armigera to pupate. Moreover, midgut replacement of the host was significantly blocked by parasitism. Furthermore, juvenile hormone (JHIII) titers of the host were dramatically elevated by parasitism, but JH esterase (JHE) activities were strongly inhibited. By contrast, steroid hormone (20-hydroxyecdysone, 20E) titers of the host were significantly depressed by parasitism on days 4-6. The expression profiles of hormone-related genes in the host also showed similar patterns with the hormone titer. For this reason, rescue experiments were performed by injecting 20E and JHIII into developmentally arrested hosts. Notably, the midgut replacement of the host was rescued by the injection of 20E, whereas JHIII injection resulted in negative effects. Altogether, O. sinensis arrests H. armigera midgut replacement by reducing 20E and maintaining JH, thereby causing developmental arrests. Our study is the first report of the possible mechanism of mermithid nematodes in regulating insect development.


Assuntos
Mermithoidea , Mariposas , Animais , Ecdisona/metabolismo , Ecdisterona/metabolismo , Ecdisterona/farmacologia , Proteínas de Insetos/metabolismo , Insetos , Hormônios Juvenis/genética , Larva , Mermithoidea/fisiologia
19.
J ECT ; 38(3): 185-191, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35220358

RESUMO

BACKGROUND: Magnetic seizure therapy (MST) is a novel convulsive therapy that has been shown to have antidepressant efficacy comparable to electroconvulsive therapy (ECT) with fewer cognitive side effects. However, the cardiovascular (CVS) effects of high frequency MST in comparison to ECT have not been investigated. MATERIALS AND METHODS: Forty-five patients with depression received 6 treatment sessions of 100 Hz MST versus 6 bifrontal ECT treatments in a nonrandomized comparative clinical design. Data on CVS function including heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and rate pressure product (RPP) were collected at baseline (T0), after the induction of anesthesia but before the electrical stimulation (T1), during convulsion (T2), 2 minutes after cessation of motor seizure (T3), 5 minutes after cessation of motor seizure (T4), and 10 minutes after cessation of motor seizure (T5). Comparisons were made with baseline data and between MST and ECT groups. RESULTS: There were statistically significant elevations in the maximum HR, SBP, DBP, and RPP in patients receiving ECT compared with MST both in the initial and sixth treatments (all P < 0.05). Particularly, at T2, the ECT group had significantly higher HR, SBP, DBP, and RPP than those in MST group both in initial and sixth treatment (all P < 0.001). At the sixth treatment, the ECT group had significantly higher SBP, DBP, and RPP during the treatment than in the MST group (all P < 0.001). LIMITATIONS: The anesthetic choices for this study may limit the generalizability of our findings. The sample size was relatively small. CONCLUSIONS: Compared with ECT, high-frequency MST has fewer CVS side effects and may be a safer option for depression patients with CVS disorders.


Assuntos
Anestesia , Eletroconvulsoterapia , Eletroencefalografia , Humanos , Convulsões
20.
J Biol Chem ; 295(9): 2570-2581, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31819008

RESUMO

Serum amyloid A (SAA), one of the major highly conserved acute-phase proteins in most mammals, is predominantly produced by hepatocytes and also by a variety of cells in extrahepatic tissues. It is well-known that the expression of SAA is sharply increased in bacterial infections. However, the exact physiological function of SAA during bacterial infection remains unclear. Herein, we showed that SAA expression significantly increased in abscesses of Staphylococcus aureus cutaneous infected mice, which exert direct antibacterial effects by binding to the bacterial cell surface and disrupting the cell membrane in acidic conditions. Mechanically, SAA disrupts anionic liposomes by spontaneously forming small vesicles or micelles under acidic conditions. Especially, the N-terminal region of SAA is necessary for membrane disruption and bactericidal activity. Furthermore, we found that mice deficient in SAA1/2 were more susceptible to infection by S. aureus In addition, the expression of SAA in infected skin was regulated by interleukin-6. Taken together, these findings support a key role of the SAA in host defense and may provide a novel therapeutic strategy for cutaneous bacterial infection.


Assuntos
Antibacterianos/metabolismo , Imunidade Inata , Proteína Amiloide A Sérica/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Proteínas de Fase Aguda/imunologia , Proteínas de Fase Aguda/metabolismo , Animais , Antibacterianos/farmacologia , Aderência Bacteriana , Membrana Celular/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Interleucina-6/fisiologia , Camundongos , Proteína Amiloide A Sérica/imunologia , Proteína Amiloide A Sérica/farmacologia , Staphylococcus aureus/citologia , Staphylococcus aureus/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa