Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genet Med ; 24(9): 1909-1919, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35687092

RESUMO

PURPOSE: The study aimed to systematically ascertain male sex chromosome abnormalities, 47,XXY (Klinefelter syndrome [KS]) and 47,XYY, and characterize their risks of adverse health outcomes. METHODS: We analyzed genotyping array or exome sequence data in 207,067 men of European ancestry aged 40 to 70 years from the UK Biobank and related these to extensive routine health record data. RESULTS: Only 49 of 213 (23%) of men whom we identified with KS and only 1 of 143 (0.7%) with 47,XYY had a diagnosis of abnormal karyotype on their medical records or self-report. We observed expected associations for KS with reproductive dysfunction (late puberty: risk ratio [RR] = 2.7; childlessness: RR = 4.2; testosterone concentration: RR = -3.8 nmol/L, all P < 2 × 10-8), whereas XYY men appeared to have normal reproductive function. Despite this difference, we identified several higher disease risks shared across both KS and 47,XYY, including type 2 diabetes (RR = 3.0 and 2.6, respectively), venous thrombosis (RR = 6.4 and 7.4, respectively), pulmonary embolism (RR = 3.3 and 3.7, respectively), and chronic obstructive pulmonary disease (RR = 4.4 and 4.6, respectively) (all P < 7 × 10-6). CONCLUSION: KS and 47,XYY were mostly unrecognized but conferred substantially higher risks for metabolic, vascular, and respiratory diseases, which were only partially explained by higher levels of body mass index, deprivation, and smoking.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome de Klinefelter , Bancos de Espécimes Biológicos , Humanos , Síndrome de Klinefelter/diagnóstico , Síndrome de Klinefelter/epidemiologia , Síndrome de Klinefelter/genética , Masculino , Aberrações dos Cromossomos Sexuais , Reino Unido/epidemiologia , Cariótipo XYY
2.
Nat Commun ; 15(1): 8420, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341815

RESUMO

Postnatal growth failure is often attributed to dysregulated somatotropin action, however marked genetic and phenotypic heterogeneity exist. We report five patients from three families who present with short stature, immune dysfunction, atopic eczema and gastrointestinal pathology associated with recessive variants in QSOX2. QSOX2 encodes a nuclear membrane protein linked to disulphide isomerase and oxidoreductase activity. Loss of QSOX2 disrupts Growth hormone-mediated STAT5B nuclear translocation despite enhanced Growth hormone-induced STAT5B phosphorylation. Moreover, patient-derived dermal fibroblasts demonstrate Growth hormone-induced mitochondriopathy and reduced mitochondrial membrane potential. Located at the nuclear membrane, QSOX2 acts as a gatekeeper for regulating stabilisation and import of phosphorylated-STAT5B. Altogether, QSOX2 deficiency modulates human growth by impairing Growth hormone-STAT5B downstream activities and mitochondrial dynamics, which contribute to multi-system dysfunction. Furthermore, our work suggests that therapeutic recombinant insulin-like growth factor-1 may circumvent the Growth hormone-STAT5B dysregulation induced by pathological QSOX2 variants and potentially alleviate organ specific disease.


Assuntos
Gastroenteropatias , Transtornos do Crescimento , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Dermatite Atópica/genética , Dermatite Atópica/patologia , Dermatite Atópica/imunologia , Fibroblastos/metabolismo , Gastroenteropatias/genética , Gastroenteropatias/patologia , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/deficiência , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento Humano/deficiência , Hormônio do Crescimento Humano/genética , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Linhagem , Fosforilação , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/deficiência , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética
3.
Nat Metab ; 6(10): 1922-1938, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39322746

RESUMO

Liver X receptor-α (LXRα) regulates cellular cholesterol abundance and potently activates hepatic lipogenesis. Here we show that at least 1 in 450 people in the UK Biobank carry functionally impaired mutations in LXRα, which is associated with biochemical evidence of hepatic dysfunction. On a western diet, male and female mice homozygous for a dominant negative mutation in LXRα have elevated liver cholesterol, diffuse cholesterol crystal accumulation and develop severe hepatitis and fibrosis, despite reduced liver triglyceride and no steatosis. This phenotype does not occur on low-cholesterol diets and can be prevented by hepatocyte-specific overexpression of LXRα. LXRα knockout mice exhibit a milder phenotype with regional variation in cholesterol crystal deposition and inflammation inversely correlating with steatosis. In summary, LXRα is necessary for the maintenance of hepatocyte health, likely due to regulation of cellular cholesterol content. The inverse association between steatosis and both inflammation and cholesterol crystallization may represent a protective action of hepatic lipogenesis in the context of excess hepatic cholesterol.


Assuntos
Colesterol , Receptores X do Fígado , Fígado , Mutação , Animais , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Colesterol/metabolismo , Humanos , Camundongos , Fígado/metabolismo , Masculino , Feminino , Camundongos Knockout , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Lipogênese/genética , Hepatócitos/metabolismo
4.
Nat Genet ; 56(4): 579-584, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575728

RESUMO

Obesity is a major risk factor for many common diseases and has a substantial heritable component. To identify new genetic determinants, we performed exome-sequence analyses for adult body mass index (BMI) in up to 587,027 individuals. We identified rare loss-of-function variants in two genes (BSN and APBA1) with effects substantially larger than those of well-established obesity genes such as MC4R. In contrast to most other obesity-related genes, rare variants in BSN and APBA1 were not associated with normal variation in childhood adiposity. Furthermore, BSN protein-truncating variants (PTVs) magnified the influence of common genetic variants associated with BMI, with a common variant polygenic score exhibiting an effect twice as large in BSN PTV carriers than in noncarriers. Finally, we explored the plasma proteomic signatures of BSN PTV carriers as well as the functional consequences of BSN deletion in human induced pluripotent stem cell-derived hypothalamic neurons. Collectively, our findings implicate degenerative processes in synaptic function in the etiology of adult-onset obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Pluripotentes Induzidas , Hepatopatias , Proteínas do Tecido Nervoso , Adulto , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Obesidade/complicações , Obesidade/genética , Proteômica
5.
Nat Genet ; 56(7): 1397-1411, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38951643

RESUMO

Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease.


Assuntos
Frequência do Gene , Menarca , Puberdade , Humanos , Feminino , Menarca/genética , Puberdade/genética , Animais , Herança Multifatorial/genética , Camundongos , Estudo de Associação Genômica Ampla , Adolescente , Puberdade Precoce/genética , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Puberdade Tardia/genética , Criança
6.
medRxiv ; 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37503126

RESUMO

Pubertal timing varies considerably and has been associated with a range of health outcomes in later life. To elucidate the underlying biological mechanisms, we performed multi-ancestry genetic analyses in ~800,000 women, identifying 1,080 independent signals associated with age at menarche. Collectively these loci explained 11% of the trait variance in an independent sample, with women at the top and bottom 1% of polygenic risk exhibiting a ~11 and ~14-fold higher risk of delayed and precocious pubertal development, respectively. These common variant analyses were supported by exome sequence analysis of ~220,000 women, identifying several genes, including rare loss of function variants in ZNF483 which abolished the impact of polygenic risk. Next, we implicated 660 genes in pubertal development using a combination of in silico variant-to-gene mapping approaches and integration with dynamic gene expression data from mouse embryonic GnRH neurons. This included an uncharacterized G-protein coupled receptor GPR83, which we demonstrate amplifies signaling of MC3R, a key sensor of nutritional status. Finally, we identified several genes, including ovary-expressed genes involved in DNA damage response that co-localize with signals associated with menopause timing, leading us to hypothesize that the ovarian reserve might signal centrally to trigger puberty. Collectively these findings extend our understanding of the biological complexity of puberty timing and highlight body size dependent and independent mechanisms that potentially link reproductive timing to later life disease.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa