Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 134(2): 557-572, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33128073

RESUMO

KEY MESSAGE: Using a fixed RIL population derived from a widely used foxtail millet backbone breeding line and an elite cultivar, we constructed a high-density bin map and identified six novel multi-environment effect QTLs and seven candidate genes for dwarf phenotype. Plant height is an important trait that determines tradeoffs between competition and resource allocation, which is crucial for yield potential. To improve the C4 model plant foxtail millet (Setaria italica) productivity, it is necessary to isolate plant height-related genes that contribute to ideal plant architecture in breeding. In the present study, we generated a foxtail millet population of 333 recombinant inbred lines (RILs) derived from a cross between a backbone line Ai 88 and an elite cultivar Liaogu 1. We evaluated plant height in 13 environmental conditions across 4 years, the mean plant height of the RIL population ranged from 89.5 to 149.9 cm. Using deep re-sequencing data, we constructed a high-density bin map with 3744 marker bins. Quantitative trait locus (QTL) mapping identified 26 QTLs significantly associated with plant height. Of these, 13 QTLs were repeatedly detected under multiple environments, including six novel QTLs that have not been reported before. Seita.1G242300, a gene encodes gibberellin 2-oxidase-8, which was detected in nine environments in a 1.54-Mb interval of qPH1.3, was considered as an important candidate gene. Moreover, other six genes involved in GA biosynthesis or signaling pathways, and fifteen genes encode F-box domain proteins which might function as E3 ligases, were also considered as candidate genes in different QTLs. These QTLs and candidate genes identified in this study will help to elucidate the genetic basis of foxtail millet plant height, and the linked markers will be useful for marker-assistant selection of varieties with ideal plant architecture and high yield potential.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Setaria (Planta)/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Setaria (Planta)/anatomia & histologia , Setaria (Planta)/crescimento & desenvolvimento
2.
Theor Appl Genet ; 134(9): 3023-3036, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34081150

RESUMO

KEY MESSAGE: Multi-environment QTL mapping identified 23 stable loci and 34 co-located QTL clusters for panicle architecture and grain yield-related traits, which provide a genetic basis for foxtail millet yield improvement. Panicle architecture and grain weight, both of which are influenced by genetic and environmental factors, have significant effects on grain yield potential. Here, we used a recombinant inbred line (RIL) population of 333 lines of foxtail millet, which were grown in 13 trials with varying environmental conditions, to identify quantitative trait loci (QTL) controlling nine agronomic traits related to panicle architecture and grain yield. We found that panicle weight, grain weight per panicle, panicle length, panicle diameter, and panicle exsertion length varied across different geographical locations. QTL mapping revealed 159 QTL for nine traits. Of the 159 QTL, 34 were identified in 2 to 12 environments, suggesting that the genetic control of panicle architecture in foxtail millet is sensitive to photoperiod and/or other environmental factors. Eighty-eight QTL controlling different traits formed 34 co-located QTL clusters, including the triple QTL cluster qPD9.2/qPL9.5/qPEL9.3, which was detected 23 times in 13 environments. Several candidate genes, including Seita.2G388700, Seita.3G136000, Seita.4G185300, Seita.5G241500, Seita.5G243100, Seita.9G281300, and Seita.9G342700, were identified in the genomic intervals of multi-environmental QTL or co-located QTL clusters. Using available phenotypic and genotype data, we conducted haplotype analysis for Seita.2G002300 and Seita.9G064000,which showed high correlations with panicle weight and panicle exsertion length, respectively. These results not only provided a basis for further fine mapping, functional studies and marker-assisted selection of traits related to panicle architecture in foxtail millet, but also provide information for comparative genomics analyses of cereal crops.


Assuntos
Cromossomos de Plantas/genética , Grão Comestível/fisiologia , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Setaria (Planta)/fisiologia , Mapeamento Cromossômico/métodos , Grão Comestível/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Setaria (Planta)/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa