RESUMO
Despite their significant importance to numerous fields, the difficulties in direct and diverse synthesis of α-hydroxy-γ-lactams pose substantial obstacles to their practical applications. Here, we designed a nitrogen and TiO2 co-doped graphitic carbon-supported material with atomically dispersed cobalt sites (CoSA-N/NC-TiO2), which was successfully applied as a multifunctional catalyst to establish a general method for direct construction of α-hydroxy-γ-lactams from cheap and abundant nitro(hetero)arenes, aldehydes, and H2O with alkynoates. The striking features of operational simplicity, broad substrate and functionality compatibility (>100 examples), high step and atom efficiency, good selectivity, and exceptional catalyst reusability highlight the practicality of this new catalytic transformation. Mechanistic studies reveal that the active CoN4 species and the dopants exhibit a synergistic effect on the formation of key acid-masked nitrones; their subsequent nucleophilic addition to the alkynoates followed by successive reduction, alkenyl hydration, and intramolecular ester ammonolysis delivers the desired products. In this work, the concept of reduction interruption leading to new reaction route will open a door to further develop useful transformations by rational catalyst design.
RESUMO
Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of hematological malignancies. Compared to our knowledge of B-cell tumors, our understanding of T-cell leukemia and lymphoma remains less advanced, and a significant number of patients are diagnosed with advanced stages of the disease. Unfortunately, the development of drug resistance in tumors leads to relapsed or refractory peripheral T-Cell Lymphomas (r/r PTCL), resulting in highly unsatisfactory treatment outcomes for these patients. This review provides an overview of potential mechanisms contributing to PTCL treatment resistance, encompassing aspects such as tumor heterogeneity, tumor microenvironment, and abnormal signaling pathways in PTCL development. The existing drugs aimed at overcoming PTCL resistance and their potential resistance mechanisms are also discussed. Furthermore, a summary of ongoing clinical trials related to PTCL is presented, with the aim of aiding clinicians in making informed treatment decisions.
Assuntos
Neoplasias Hematológicas , Linfoma de Células T Periférico , Humanos , Linfoma de Células T Periférico/tratamento farmacológico , Linfoma de Células T Periférico/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resultado do Tratamento , Neoplasias Hematológicas/tratamento farmacológico , Microambiente TumoralRESUMO
BACKGROUND: Diosgenin is an important steroidal precursor renowned for its diverse medicinal uses. It is predominantly sourced from Dioscorea species, particularly Dioscorea zingiberensis. Dioscorea zingiberensis has an ability to accumulate 2-16% diosgenin in its rhizomes. In this study, a diverse population of 180 D. zingiberensis accessions was used to evaluate the genomic regions associated with diosgenin biosynthesis by the genome wide association study approach (GWAS). RESULTS: The whole population was characterized for diosgenin contents from tubers by gas chromatography mass spectrometry. The individuals were genotyped by the genotyping-by-sequencing approach and 10,000 high-quality SNP markers were extracted for the GWAS. The highest significant marker-trait-association was observed as an SNP transversion (G to T) on chromosome 10, with 64% phenotypic variance explained. The SNP was located in the promoter region of CYP94D144 which is a member of P450 gene family involved in the independent biosynthesis of diosgenin from cholesterol. The transcription factor (TF) binding site enrichment analysis of the promoter region of CYP94D144 revealed NAC TF as a potential regulator. The results were further validated through expression profiling by qRT-PCR, and the comparison of high and low diosgenin producing hybrids obtained from a bi-parental population. CONCLUSIONS: This study not only enhanced the understanding of the genetic basis of diosgenin biosynthesis but also serves as a valuable reference for future genomic investigations on CYP94D144, with the aim of augmenting diosgenin production in yam tubers.
Assuntos
Dioscorea , Diosgenina , Estudo de Associação Genômica Ampla , Tubérculos , Polimorfismo de Nucleotídeo Único , Diosgenina/metabolismo , Dioscorea/genética , Dioscorea/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Variação GenéticaRESUMO
BACKGROUND: Amylose, a prebiotic found in yams is known to be beneficial for the gut microflora and is particularly advantageous for diabetic patients' diet. However, the genetic machinery underlying amylose production remains elusive. A comprehensive characterization of the genetic basis of amylose content in yam tubers is a prerequisite for accelerating the genetic engineering of yams with respect to amylose content variation. RESULTS: To uncover the genetic variants underlying variation in amylose content, we evaluated amylose content in freshly harvested tubers from 150 accessions of Dioscorea zingibensis. With 30,000 high-quality single nucleotide polymorphisms (SNP), we performed a genome-wide association analysis (GWAS). The population structure analysis classified the D. zingiberensis accessions into three groups. A total of 115 significant loci were detected on four chromosomes. Of these, 112 significant SNPs (log10(p) = 5, q-value < 0.004) were clustered in a narrow window on the chromosome 6 (chr6). The peak SNP at the position 75,609,202 on chr6 could explain 63.15% of amylose variation in the population and fell into the first exon of the ADP-glucose pyrophosphorylase (AGPase) small subunit gene, causing a non-synonymous modification of the resulting protein sequence. Allele segregation analysis showed that accessions with the rare G allele had a higher amylose content than those harboring the common A allele. However, AGPase, a key enzyme precursor of amylose biosynthesis, was not expressed differentially between accessions with A and G alleles. Overexpression of the two variants of AGPase in Arabidopsis thaliana resulted in a significantly higher amylose content in lines transformed with the AGPase-G allele. CONCLUSIONS: Overall, this study showed that a major genetic variant in AGPase probably enhances the enzyme activity leading to high amylose content in D. zingiberensis tuber. The results provide valuable insights for the development of amylose-enriched genotypes.
Assuntos
Amilose , Dioscorea , Estudo de Associação Genômica Ampla , Tubérculos , Polimorfismo de Nucleotídeo Único , Amilose/metabolismo , Dioscorea/genética , Dioscorea/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Plantas Geneticamente Modificadas/genética , Genes de PlantasRESUMO
Long-term exposure to low concentration indoor VOCs of acetaldehyde (CH3CHO) is harmful to human health. Thus, a novel isogenous heterojunction CeO2/Ce-MOF photocatalyst is synthesized via a one-step hydrothermal method for the effective elimination of CH3CHO in this work. This CeO2/Ce-MOF photocatalyst performs well in CH3CHO removal and achieves an apparent quantum efficiency of 7.15% at 420 nm, which presents ≈6.7 and 3.4 times superior to those generated by CeO2 and Ce-MOF, respectively. The enhanced efficiency is due to two main aspects including i) an effective photocarrier separation ability and the prolonged reaction lifetime of excitons play crucial roles and ii) the formation of an internal electric field (IEF) is sufficient to overcome the considerable exciton binding energy, and increases the exciton dissociation efficiency by up to 50.4%. Moreover, the reasonable pathways and mechanisms of CH3CHO degradation are determined by in situ DRIFTS analysis and simulated DFT calculations. Those results demonstrated that S-scheme heterojunction successfully increases the efficiency of harmful volatile organic compounds elimination, and it offers essential guidance for designing rare earth-based MOF photocatalysts.
RESUMO
Oral submucous fibrosis (OSF) is a potentially malignant disorder of the oral mucosa; however, whether and how the fibrotic matrix of OSF is involved in the malignant transformation of epithelial cells remains unknown. Herein, oral mucosa tissue from patients with OSF, OSF rat models, and their controls were used to observe the extracellular matrix changes and epithelial-mesenchymal transformation (EMT) in fibrotic lesions. Compared with controls, oral mucous tissues from patients with OSF showed an increased number of myofibroblasts, a decreased number of blood vessels, and increased type I and type III collagen levels. In addition, the oral mucous tissues from humans and OSF rats showed increased stiffness, accompanied by increased EMT activities of epithelial cells. The EMT activities of stiff construct-cultured epithelial cells were increased significantly by exogenous piezo-type mechanosensitive ion channel component 1 (Piezo1) activation, and decreased by yes-associated protein (YAP) inhibition. During ex vivo implantation, oral mucosal epithelial cells of the stiff group showed increased EMT activities and increased levels of Piezo1 and YAP compared with those in the sham and soft groups. These results indicate that increased stiffness of the fibrotic matrix in OSF led to increased proliferation and EMT of mucosal epithelial cells, in which the Piezo1-YAP signal transduction is important.
Assuntos
Fibrose Oral Submucosa , Humanos , Ratos , Animais , Fibrose Oral Submucosa/metabolismo , Fibrose Oral Submucosa/patologia , Mucosa Bucal/metabolismo , Mucosa Bucal/patologia , Transição Epitelial-Mesenquimal , Miofibroblastos/metabolismo , Células Epiteliais/metabolismoRESUMO
The in-depth study on reduction-specified coupling reactions of the nitroarenes by heterogeneous cobalt catalysis opens a door for diversified syntheses of functional N-containing molecules. Guided by the structure-function relationship of heterogeneous materials, rational design of nano-catalysts can effectively regulate the routes of organic reactions. Precise transformation of the intermediates generated during the nitroarene reduction with a suitable nano-catalyst is a promising way to develop new tandem reactions, and to synthesize structurally novel compounds that are of difficult access with the conventional approaches.
RESUMO
ABSTRACT: The hypothalamic paraventricular nucleus (PVN) plays a central role in regulating cardiovascular activity and blood pressure. We administered hydroxylamine hydrochloride (HA), a cystathionine-ß-synthase inhibitor, into the PVN to suppress endogenous hydrogen sulfide and investigate its effects on the mitogen-activated protein kinase (MAPK) pathway in high salt (HS)-induced hypertension. We randomly divided 40 male Dahl salt-sensitive rats into 4 groups: the normal salt (NS) + PVN vehicle group, the NS + PVN HA group, the HS + PVN vehicle group, and the HS + PVN HA group, with 10 rats in each group. The rats in the NS groups were fed a NS diet containing 0.3% NaCl, while the HS groups were fed a HS diet containing 8% NaCl. The mean arterial pressure was calculated after noninvasive measurement using an automatic sphygmomanometer to occlude the tail cuff once a week. HA or vehicle was infused into the bilateral PVN using Alzet osmotic mini pumps for 6 weeks after the hypertension model was successfully established. We measured the levels of H 2 S in the PVN and plasma norepinephrine using enzyme linked immunosorbent assay. In addition, we assessed the parameters of the MAPK pathway, inflammation, and oxidative stress through western blotting, immunohistochemical analysis, or real-time polymerase chain reaction. In this study, we discovered that decreased levels of endogenous hydrogen sulfide in the PVN contributed to the onset of HS-induced hypertension. This was linked to the activation of the MAPK signaling pathway, proinflammatory cytokines, and oxidative stress in the PVN, as well as the activation of the sympathetic nervous system.
Assuntos
Sulfeto de Hidrogênio , Hipertensão , Núcleo Hipotalâmico Paraventricular , Cloreto de Sódio na Dieta , Animais , Masculino , Ratos , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Hidroxilamina/farmacologia , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Hipertensão/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Norepinefrina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/enzimologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos DahlRESUMO
OBJECTIVE: In this study, we examined the value of chest CT signs combined with peripheral blood eosinophil percentage in differentiating between pulmonary paragonimiasis and tuberculous pleurisy in children. METHODS: Patients with pulmonary paragonimiasis and tuberculous pleurisy were retrospectively enrolled from January 2019 to April 2023 at the Kunming Third People's Hospital and Lincang People's Hospital. There were 69 patients with pulmonary paragonimiasis (paragonimiasis group) and 89 patients with tuberculous pleurisy (tuberculosis group). Clinical symptoms, chest CT imaging findings, and laboratory test results were analyzed. Using binary logistic regression, an imaging model of CT signs and a combined model of CT signs and eosinophils were developed to calculate and compare the differential diagnostic performance of the two models. RESULTS: CT signs were used to establish the imaging model, and the receiver operating characteristic (ROC) curve was plotted. The area under the curve (AUC) was 0.856 (95% CI: 0.799-0.913), the sensitivity was 66.7%, and the specificity was 88.9%. The combined model was established using the CT signs and eosinophil percentage, and the ROC was plotted. The AUC curve was 0.950 (95% CI: 0.919-0.980), the sensitivity was 89.9%, and the specificity was 90.1%. The differential diagnostic efficiency of the combined model was higher than that of the imaging model, and the difference in AUC was statistically significant. CONCLUSION: The combined model has a higher differential diagnosis efficiency than the imaging model in the differentiation of pulmonary paragonimiasis and tuberculous pleurisy in children. The presence of a tunnel sign on chest CT, the absence of pulmonary nodules, and an elevated percentage of peripheral blood eosinophils are indicative of pulmonary paragonimiasis in children.
Assuntos
Eosinófilos , Paragonimíase , Tomografia Computadorizada por Raios X , Tuberculose Pleural , Humanos , Paragonimíase/diagnóstico , Paragonimíase/diagnóstico por imagem , Masculino , Feminino , Criança , Estudos Retrospectivos , Diagnóstico Diferencial , Tuberculose Pleural/diagnóstico , Pré-Escolar , Adolescente , Curva ROC , Sensibilidade e EspecificidadeRESUMO
Periodontitis is widely acknowledged as the most prevalent type of oral inflammation, arising from the dynamic interplay between oral pathogens and the host's immune responses. It is also recognized as a contributing factor to various systemic diseases. Dysbiosis of the oral microbiota can significantly alter the composition and diversity of the gut microbiota. Researchers have delved into the links between periodontitis and systemic diseases through the "oral-gut" axis. However, whether the associations between periodontitis and the gut microbiota are simply correlative or driven by causative mechanistic interactions remains uncertain. This review investigates how dysbiosis of the gut microbiota impacts periodontitis, drawing on existing preclinical and clinical data. This study highlights potential mechanisms of this interaction, including alterations in subgingival microbiota, oral mucosal barrier function, neutrophil activity, and abnormal T-cell recycling, and offers new perspectives for managing periodontitis, especially in cases linked to systemic diseases.
RESUMO
Soil salinization poses a significant global challenge, exerting adverse effects on both agriculture and ecosystems. Planting halophytes has the potential ability to improve saline-alkali land and enhance ecosystem multifunctionality (EMF). However, it remains unclear which halophytes are effective in improving saline-alkali land and what impact they have on the rhizosphere microbial communities and EMF. In this study, we evaluated the Na+ absorption capability of five halophytes (Grubovia dasyphylla, Halogeton glomeratus, Suaeda salsa, Bassia scoparia, and Reaumuria songarica) and assessed their rhizosphere microbial communities and EMF. The results showed that S. salsa possessed the highest shoot (3.13 mmol g-1) and root (0.92 mmol g-1) Na+ content, and its soil Na+ absorption, along with B. scoparia, was significantly higher than that of other plants. The soil pH, salinity, and Na+ content of the halophyte rhizospheres decreased by 6.21%, 23.49%, and 64.29%, respectively, when compared to the bulk soil. Extracellular enzymes in the halophyte rhizosphere soil, including α-glucosidase, ß-glucosidase, ß-1,4-N-acetyl-glucosaminidase, neutral phosphatase, and alkaline phosphatase, increased by 70.1%, 78.4%, 38.5%, 79.1%, and 64.9%, respectively. Furthermore, the halophyte rhizosphere exhibited higher network complexity of bacteria and fungi and EMF than bulk soil. The relative abundance of the dominant phyla Proteobacteria, Firmicutes, and Ascomycota in the halophyte rhizosphere soil increased by 9.4%, 8.3%, and 22.25%, respectively, and showed higher microbial network complexity compared to the bulk soil. Additionally, keystone taxa, including Muricauda, Nocardioides, and Pontibacter, were identified with notable effects on EMF. This study confirmed that euhalophytes are the best choice for saline-alkali land restoration. These findings provided a theoretical basis for the sustainable use of saline-alkali cultivated land.
Assuntos
Rizosfera , Salinidade , Plantas Tolerantes a Sal , Microbiologia do Solo , Solo , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/microbiologia , Solo/química , Ecossistema , MicrobiotaRESUMO
Tubular epithelial cells (TECs) play critical roles in the development of diabetic nephropathy (DN), and can activate macrophages through the secretion of exosomes. However, the mechanism(s) of TEC-exosomes in macrophage activation under DN remains unknown. By mass spectrometry, 1,644 differentially expressed proteins, especially Dll4, were detected in the urine exosomes of DN patients compared with controls, which was confirmed by western blot assay. Elevated Epsin1 and Dll4/N1ICD expression was observed in kidney tissues in both DN patients and db/db mice and was positively associated with tubulointerstitial damage. Exosomes from high glucose (HG)-treated tubular cells (HK-2) with Epsin1 knockdown (KD) ameliorated macrophage activation, TNF-α, and IL-6 expression, and tubulointerstitial damage in C57BL/6 mice in vivo. In an in vitro study, enriched Dll4 was confirmed in HK-2 cells stimulated with HG, which was captured by THP-1 cells and promoted M1 macrophage activation. In addition, Epsin1 modulated the content of Dll4 in TEC-exosomes stimulated with HG. TEC-exosomes with Epsin1-KD significantly inhibited N1ICD activation and iNOS expression in THP-1 cells compared with incubation with HG alone. These findings suggested that Epsin1 could modulate tubular-macrophage crosstalk in DN by mediating exosomal sorting of Dll4 and Notch1 activation.
Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Camundongos , Movimento Celular , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/metabolismo , Células Epiteliais/metabolismo , Glucose/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BLRESUMO
The dynamic of plant-parasitic nematode populations in soil is closely related to soil microorganisms. Fungi from Heterodera zeae cysts were isolated to explore the phenomenon of decline in the H. zeae population in the soil. Phylogenetic study of partial ITS, BenA, CaM, and RPB2 gene sequences, in addition to morphological investigations, was utilized to identify a nematode-destroying fungus. The nematicidal activity of a novel strain GX1 against H. zeae was assessed in vitro and in the greenhouse. Our findings revealed that strain GX1 is a new species of Talaromyces, named Talaromyces cystophila. It has a strong parasitic and lethal effect on H. zeae cysts, with 91.11% parasitism on cysts at 3 days after treatment. The contents of second-stage juveniles (J2s) and eggs inside the cysts were degraded and formed dense vacuoles, and the damaged eggs could not hatch normally. The spore suspension exhibited high nematophagous activity against nematodes, and fermentation filtrate exhibited marked inhibition of egg hatching and nematicidal activities on J2s. The hatching inhibition rates of eggs exposed to 1 × 108 CFU/ml spore suspensions or 20% 1-week fermentation filtrate (1-WF) for 15 days were 98.56 and 100%, respectively. The mortality of J2s exposed to 1 × 108 CFU/ml spore suspension reached 100% at 24 h; exposure to 50% 2-WF was 98.65 and 100% at 24 and 48 h, respectively. Greenhouse experiments revealed that the spore suspension and fermentation broth considerably decreased H. zeae reproduction by 56.17 to 78.76%. T. cystophila is a potential biocontrol strain with nematophagous and nematicidal activity that deserves attention and application.
Assuntos
Cistos , Talaromyces , Tylenchida , Tylenchoidea , Animais , Zea mays , Talaromyces/metabolismo , Filogenia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/parasitologia , Antinematódeos/farmacologia , SoloRESUMO
OBJECTIVE: To improve the understanding of the clinical features and imaging characteristics of pregnant women with and without in-vitro fertilisation-embryo transfer combined with pulmonary tuberculosis (TB). METHODS: A retrospective analysis was conducted involving 50 patients with pregnancy who had pulmonary TB and were admitted to the Third People's Hospital of Kunming (China) between 1 January 2017 and 31 December 2021. These patients were divided into an in-vitro fertilisation and embryo transfer (IVF-ET) conception group and a natural conception group according to the conception method. The clinical and imaging data were then collected and compared. RESULTS: The mean age of the IVF-ET group (n = 13, 31.85 ± 5.84 years) was higher than in the natural conception group (n = 37, 27.05 ± 5.5 years). The proportions of fever, haematogenous TB and extrapulmonary TB in the IVF-ET group (92.31%, 84.62% and 76.92%, respectively) were higher than those in the natural conception group (40.54%,16.22%,27.03%,respectively). The percentage of patients with pregnancy who had intracranial TB (76.9%) in the IVF-ET group was higher than in the natural conception group (10.8%). The percentage of pregnancy terminations in the IVF-ET conception group (84.62%) was higher than in the natural conception group (48.65%). All the above results had statistically significant differences (p < 0.05). CONCLUSION: Overall, IVF-ET conception combined with extensive pulmonary TB lesions lead to heavy systemic toxic symptoms, severe disease and poor pregnancy outcomes. Therefore, screening for TB prior to performing IVF-ET is recommended.
Assuntos
Tuberculose Pulmonar , Tuberculose , Feminino , Humanos , Gravidez , Transferência Embrionária , Fertilização , Estudos Retrospectivos , Estudos de Casos e ControlesRESUMO
BACKGROUND: Red cell distribution width (RDW) has been recognized as a potential inflammatory biomarker, with elevated levels associated with adverse outcomes in various diseases. However, its role in predicting outcomes after brain tumor craniotomy remains unclear. We aimed to assess whether preoperative RDW influences mortality and postoperative complications in patients undergoing brain tumor craniotomy. METHODS: This retrospective cohort study analyzed serum RDW levels in patients undergoing brain tumor craniotomy at West China Hospital. RDW was evaluated in two forms: RDW-CV and RDW-SD, and was categorized into four quartiles for analysis by using logistic regression and multivariate analysis to adjust for confounding. RESULTS: The study encompassed 10,978 patients undergoing brain tumor craniotomy. our analysis revealed no significant difference in 30-day mortality across various RDW-CV levels. However, we observed a dose-response relationship with preoperative RDW-CV levels in assessing long-term mortality risks. Specifically, patients with RDW-CV levels of 12.6-13.2% (HR 1.04, 95% CI 1.01-1.18), 13.2-13.9% (HR 1.12, 95% CI 1.04-1.26), and > 13.9% (HR 1.34, 95% CI 1.18-1.51) exhibited a significantly higher hazard of long-term mortality compared to those with RDW-CV < 12.6%. When preoperative RDW-CV was analyzed as a continuous variable, for each 10% increase in RDW-CV, the adjusted OR of long-term mortality was 1.09 (95% CI 1.05-1.13). we also observed significant associations between preoperative higher RDW-CV levels and certain postoperative complications including acute kidney injury (OR 1.46, 95% CI: 1.10-1.94), pneumonia infection (OR 1.19 95% CI: 1.05-1.36), myocardial infarction (OR 1.32, 95% CI: 1.05-1.66), readmission (OR 1.15, 95% CI: 1.01-1.30), and a prolonged length of hospital stay (OR 1.11, 95% CI: 1.02-1.21). For RDW-SD levels, there was no significant correlation for short-term mortality, long-term mortality, and postoperative complications. CONCLUSIONS: Our study showed elevated preoperative RDW-CV is significantly associated with increased long-term mortality and multiple postoperative complications, but no such association is observed with RDW-SD. These findings show the prognostic importance of RDW-CV, reinforcing its potential as a valuable tool for risk stratification in the preoperative evaluation of brain tumor craniotomy patients.
Assuntos
Neoplasias Encefálicas , Craniotomia , Índices de Eritrócitos , Complicações Pós-Operatórias , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Craniotomia/efeitos adversos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/mortalidade , Estudos Retrospectivos , Complicações Pós-Operatórias/epidemiologia , Adulto , IdosoRESUMO
Postoperative dysnatremias, characterized by imbalances in serum sodium levels, have been linked to increased resource utilization and mortality in surgical and intensive care patients. The management of dysnatremias may involve medical interventions based on changes in sodium levels. In this study, we aimed to investigate the impact of postoperative changes in natremia on outcomes specifically in patients undergoing craniotomy.We conducted a retrospective analysis of patient records from the Department of Neurosurgery at West China Hospital, Sichuan University, covering the period from January 2011 to March 2021. We compared the highest and lowest sodium values in the first 14 postoperative days with the baseline values to define four categories for analysis: no change < 5 mmol/L; decrease > 5 mmol/L; increase > 5 mmol/L; both increase and decrease > 5 mmol/L. The primary outcome measure was 30-day mortality.A total of 12,713 patients were included in the study, and the overall postoperative mortality rate at 30 days was 2.1% (264 patients). The increase in sodium levels carried a particularly high risk, with a tenfold increase (OR 10.21; 95% CI 7.25-14.39) compared to patients with minimal or no change. Decreases in sodium levels were associated with an increase in mortality (OR 1.60; 95% CI 1.11-2.23).Moreover, the study revealed that postoperative sodium decrease was correlated with various complications, such as deep venous thrombosis, pneumonia, intracranial infection, urinary infection, seizures, myocardial infarction, and prolonged hospital length of stay. On the other hand, postoperative sodium increases were associated with acute kidney injury, deep venous thrombosis, pneumonia, intracranial infection, urinary infection, surgical site infection, seizures, myocardial infarction, and prolonged hospital length of stay.Changes in postoperative sodium levels were associated with increased complications, prolonged length of hospital stay, and 30-day mortality. Moreover, the severity of sodium change values correlated with higher mortality rates.
Assuntos
Infarto do Miocárdio , Pneumonia , Trombose Venosa , Humanos , Estudos Retrospectivos , Craniotomia , Convulsões/epidemiologia , SódioRESUMO
Flexible ultrasonic devices represent a feasible technology for providing timely signal detection and even a non-invasive disease treatment for the human brain. However, the deformation of the devices is always accompanied by a change in the acoustic field, making it hard for accurate focusing. Herein, we report a stable and flexible transducer. This device can generate a high-intensity acoustic signal with a controllable acoustic field even when the device is bent. The key is to use a low-impedance piezoelectric material and an island-bridge device structure, as well as to design a unique time-reversal algorithm to correct the deviation of signals after transcranial propagation. To provide an in-depth study of the acoustic field of flexible devices, we also analyze the effects of mechanical deformation and structural parameters on the corresponding acoustic response.
RESUMO
The significance of hypoxia at the maternal-fetal interface is proven to be self-explanatory in the context of pregnancy. During the first trimester, low oxygen conditions play a crucial role in processes such as angiogenesis, trophoblast invasion and differentiation, and immune regulation. Recently, there has been increasing research on decidual macrophages, which contribute to the maintenance of immune tolerance, placental and fetal vascular development, and spiral artery remodeling, to investigate the effects of hypoxia on their biological behaviors. On these grounds, this review describes the dynamic changes in oxygen levels at the maternal-fetal interface throughout gestation, summarizing current knowledge on how the hypoxic environment sustains a successful pregnancy by regulating retention, differentiation and efferocytosis of decidual macrophages. Additionally, we explore the relationship between spontaneous miscarriages and an abnormal hypoxia-macrophage axis, shedding light on the underlying mechanisms. However, further studies are essential to elucidate these pathways in greater detail and to develop targeted interventions that could improve pregnancy outcomes.
Assuntos
Aborto Espontâneo , Decídua , Hipóxia , Macrófagos , Feminino , Humanos , Gravidez , Macrófagos/metabolismo , Macrófagos/imunologia , Aborto Espontâneo/metabolismo , Decídua/metabolismo , Hipóxia/metabolismo , AnimaisRESUMO
BACKGROUND/AIM: There is no thorough overview of intentional tooth replantation techniques. We performed a bibliometric analysis of the development of intentional tooth replantation. MATERIALS AND METHODS: A comprehensive search of the Web of Science and SCOPUS databases was conducted in February 2023. Original articles and reviews of human studies with "intentional replantation" or synonyms in the titles, abstracts, or keywords were included. A descriptive analysis of bibliographic data, co-occurrence analysis, and coupling of publications was performed. Multivariate analysis was used to explore the bibliometric parameters associated with the citation counts. RESULTS: The study included 171 papers, which were co-authored by 500 individuals affiliated with 217 institutions from 28 countries/regions. The USA contributed the greatest number of publications, followed by China, and Japan. The USA had 694 citations, followed by Japan (210), and Turkey (210). The Journal of Endodontics and Dental Traumatology contributed the most citations. Five directions for future research were identified based on the coupling relationships of publications, including "managing vertical root fractures with adhesive resin using the intentional replantation technique," "intentional replantation for periodontally hopeless or endodontically compromised teeth," "intentional replantation for treating abnormalities of morphological development," "outcomes and prognosis factors of intentional replantation," and "treating root replacement resorption by intentional replantation." Multivariate analysis showed that the publication year, Journal Citation Reports ranking of journals, study design, and disease type were predictors of citation counts. CONCLUSIONS: This bibliometric analysis provides a comprehensive description of the intentional replantation technique. The USA published the greatest volume of papers and generated the most citations. The Journal of Endodontics and Dental Traumatology are considered the most influential. The Journal Citation Reports journal ranking (Q1, Q2), study design (case reports, cohort studies), and disease type (crown root fractures) were associated with the citation counts.
Assuntos
Reimplante Dentário , Humanos , Bibliometria , Fraturas Ósseas , Reabsorção da Raiz , Fraturas dos Dentes , Reimplante Dentário/métodosRESUMO
The mitochondrial (mt) genome can provide data for phylogenetic analyses and evolutionary biology. Herein, we sequenced and annotated the complete mt genome of Ergasilus anchoratus. This mt genome was 13852 bp long and comprised 13 protein-coding genes (PCGs), 22 tRNAs and 2 rRNAs. All PCGs used the standard ATN start codons and complete TAA/TAG termination codons. A majority of tRNA genes exhibited standard cloverleaf secondary structures, with the exception of one tRNA that lacked the TψC arm (trnC), and three tRNAs that lacked the DHU arm (trnR, trnS1 and trnS2). Phylogenetic analyses conducted using Bayesian inference (BI) and maximum likelihood (ML) methods both supported Ergasilidae as a monophyletic family forming a sister group to Lernaea cyprinacea and Paracyclopina nana. It also supported the monophyly of orders Calanoida, Cyclopoida, and Siphonostomatoida; and the monophyly of families Harpacticidae, Ergasilidae, Diaptomidae, and Calanidae. The gene orders of E. anchoratus and Sinergasilus undulatus were identical, which represents the first instance of two identical gene orders in copepods. More mt genomes are needed to better understand the phylogenetic relationships within Copepoda in the future.