Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 411, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980443

RESUMO

This study investigates the dynamic changes in milk nutritional composition and microbial communities in Tibetan sheep and goats during the first 56 days of lactation. Milk samples were systematically collected at five time points (D0, D7, D14, D28, D56) post-delivery. In Tibetan sheep, milk fat, protein, and casein contents were highest on D0, gradually decreased, and stabilized after D14, while lactose and galactose levels showed the opposite trend. Goat milk exhibited similar initial peaks, with significant changes particularly between D0, D7, D14, and D56. 16S rRNA gene sequencing revealed increasing microbial diversity in both species over the lactation period. Principal coordinates analysis identified distinct microbial clusters corresponding to early (D0-D7), transitional (D14-D28), and mature (D56) stages. Core phyla, including Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, dominated the milk microbiota, with significant temporal shifts. Core microbes like Lactobacillus, Leuconostoc, and Streptococcus were common in both species, with species-specific taxa observed (e.g., Pediococcus in sheep, Shewanella in goats). Furthermore, we observed a highly shared core microbiota in sheep and goat milk, including Lactobacillus, Leuconostoc, and Streptococcus. Spearman correlation analysis highlighted significant relationships between specific microbial genera and milk nutrients. For instance, Lactobacillus positively correlated with total solids, non-fat milk solids, protein, and casein, while Mannheimia negatively correlated with protein content. This study underscores the complex interplay between milk composition and microbial dynamics in Tibetan sheep and goats, informing strategies for livestock management and nutritional enhancement. KEY POINTS: • The milk can be classified into three types based on the microbiota composition • The changes of milk microbiota are closely related to the variations in nutrition • Filter out microbiota with species specificity and age specificity in the milk.


Assuntos
Cabras , Microbiota , Leite , RNA Ribossômico 16S , Animais , Cabras/microbiologia , Leite/microbiologia , Leite/química , Ovinos/microbiologia , RNA Ribossômico 16S/genética , Tibet , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Feminino , Lactação , Caseínas , Proteínas do Leite/análise
2.
Front Microbiol ; 13: 908326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090079

RESUMO

Due to the harsh environment in the Tibetan Plateau, traditional grazing greatly limits the growth potential of local animals and causes severe ecosystem degradation. This is an urgent issue to be solved, which requires alternative strategies for grazing animals in the Tibetan alpine pastoral livestock systems. This study aimed to investigate the effects of different feeding strategies on growth performance and ruminal microbiota-host interactions in the local breed of sheep (Gangba sheep). Thirty 9-month old Gangba sheep (n = 10 per group) were assigned to natural grazing (G), semi-grazing with supplementation (T), and barn feeding (F) groups (supplementation of concentrate and oat hay) based on body weight. At the end of the experiment (75 d), all sheep were weighed, rumen fluid was obtained from six sheep per group, and ruminal epithelium was obtained from 3 sheep per group. The results showed that: (1) Compared with the G and T groups, the F group significantly increased dry matter intake, average daily gain, and feed conversion ratio of animals. Additionally, Gangba sheep in the F group had higher concentrations of ruminal short-chain volatile fatty acids (VFAs), especially propionate and butyrate (P <0.05) than sheep in the G and T groups. (2) The principal coordinates analysis indicated a significant difference in bacterial composition among different feed strategies. More specifically, the relative abundance of propionate (unidentified F082 and Succiniclasticum) and butyrate-producing (Eubacterium_coprostanoligenes_group) genera were also observed to be increased in the F group, in which unidentified F082 was identified as a differential biomarker among the three groups according to linear discriminant analysis effect size analysis. (3) The dynamics of the rumen epithelial transcriptome revealed that ECM-receptor interactions, focal adhesion, and PI3K-Akt signaling pathways, which are critical in mediating many aspects of cellular functions such as cell proliferation and motility, were upregulated in the F group. In conclusion, under harsh conditions in the Tibetan alpine meadow, barn feeding increased ruminal VFAs concentrations (especially propionate and butyrate), which stimulated gene expression related to cell proliferation in rumen epithelium, appearing to be superior to natural grazing and semi-grazing in gaining body weight of the local Gangba sheep.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa