Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
J Toxicol Environ Health A ; 87(10): 428-435, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38551404

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease associated with long non-coding RNAs and DNA methylation; however, the mechanisms underlying the role of lncRNA small nucleolar RNA host gene 1 (lncRNA SNHG1) and subsequent involvement of DNA methylation in AD development are not known. The aim of this study was to examine the regulatory mechanisms attributed to lncRNA SNHG1 gene utilizing 2 strains of senescence-accelerated mouse prone 8 (SAMP8) model of AD and compared to senescence-accelerated mouse resistant (SAMR) considered a control. Both strains of the mouse were transfected with either blank virus, psLenti-U6-SNHG1(low gene expression) virus, and psLenti-pA-SNHG1(gene overexpression) virus via a single injection into the brains for 2 weeks. At 2 weeks mice were subjected to a Morris water maze to determine any behavioral effects followed by sacrifice to extract hippocampal tissue for Western blotting to measure protein expression of p-tau, DNMT1, DNMT3A, DNMT3B, TET1, and p-Akt. No marked alterations were noted in any parameters following blank virus transfection. In SAMP8 mice, a significant decrease was noted in protein expression of DNMT1, DNMT3A, DNMT3B, and p-Akt associated with rise in p-tau and TET1. Transfection with ps-Lenti-U6-SNHG1 alone in SAMR1 mice resulted in a significant rise in DNMTs and p-Akt and a fall in p-tau and TET1. Transfection of SAMP8 with ps-Lenti-U6-SNHG1 blocked effects on overexpression noted in this mouse strain. However, knockdown of lncRNA SNHG1 yielded the opposite results as found in SAMR1 mice. In conclusion, the knockdown of lncRNA SNHG1 enhanced DNA methylation through the PI3K/Akt signaling pathway, thereby reducing the phosphorylation levels of tau in SAMP8 AD model mice with ameliorating brain damage attributed to p-tau accumulation with consequent neuroprotection.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , RNA Longo não Codificante , Camundongos , Animais , Doença de Alzheimer/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Metilação de DNA , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doenças Neurodegenerativas/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo
2.
Inorg Chem ; 61(1): 92-104, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34817979

RESUMO

Monodentate organophosphorus ligands have been used for the extraction of the uranyl ion (UO22+) for over half a century and have exhibited exceptional extractability and selectivity toward the uranyl ion due to the presence of the phosphoryl group (O═P). Tributyl phosphate (TBP) is the extractant of the world-renowned PUREX process, which selectively recovers uranium from spent nuclear fuel. Trialkyl phosphine oxide (TRPO) shows extractability toward the uranyl ion that far exceeds that for other metal ions, and it has been used in the TRPO process. To date, however, the mechanism of the high affinity of the phosphoryl group for UO22+ remains elusive. We herein investigate the bonding covalency in a series of complexes of UO22+ with TRPO by oxygen K-edge X-ray absorption spectroscopy (XAS) in combination with density functional theory (DFT) calculations. Four TRPO ligands with different R substituents are examined in this work, for which both the ligands and their uranyl complexes are crystallized and investigated. The study of the electronic structure of the TRPO ligands reveals that the two TRPO molecules, irrespective of their substituents, can engage in σ- and π-type interactions with U 5f and 6d orbitals in the UO2Cl2(TRPO)2 complexes. Although both the axial (Oyl) and equatorial (Oeq) oxygen atoms in the UO2Cl2(TRPO)2 complexes contribute to the X-ray absorption, the first pre-edge feature in the O K-edge XAS with a small intensity is exclusively contributed by Oeq and is assigned to the transition from Oeq 1s orbitals to the unoccupied molecular orbitals of 1b1u + 1b2u + 1b3u symmetries resulting from the σ- and π-type mixing between U 5f and Oeq 2p orbitals. The small intensity in the experimental spectra is consistent with the small amount of Oeq 2p character in these orbitals for the four UO2Cl2(TRPO)2 complexes as obtained by Mulliken population analysis. The DFT calculations demonstrate that the U 6d orbitals are also involved in the U-TRPO bonding interactions in the UO2Cl2(TRPO)2 complexes. The covalent bonding interactions between TRPO and UO22+, especially the contributions from U 5f orbitals, while appearing to be small, are sufficiently responsible for the exceptional extractability and selectivity of monodentate organophosphorus ligands for the uranyl ion. Our results provide valuable insight into the fundamental actinide chemistry and are expected to directly guide actinide separation schemes needed for the development of advanced nuclear fuel cycle technologies.

3.
J Phys Chem A ; 126(42): 7695-7708, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36251495

RESUMO

Dinuclear perchlorate complexes of uranium, neptunium, and plutonium were characterized by reactivity and DFT, with results revealing structures containing pentavalent, hexavalent, and heptavalent actinyls, and actinyl-actinyl interactions (AAIs). Electrospray ionization produced native complexes [(AnO2)2(ClO4)3]- for An:An = U:U, Np:Np, Pu:Pu, and Np:Pu, which are intuitively formulated as actinyl(V) perchlorates. However, DFT identified lower-energy structures [(AnO2)(AnO3)(ClO4)2(ClO3)]- comprising a perchlorate fragmented to ClO3, actinyl(VI) cation AnVIO22+, and neutral AnO3. For U:U and Np:Np, and Np in Np:Pu, the coordinated AnO3 is calculated as actinyl(VI) with an equatorial oxo, [Oyl═AnVI═Oyl][═Oeq], whereas for Pu:Pu, it is plutonyl(V) oxyl, [Oyl═PuV═Oyl][-Oeq•]. The implied lower stability of PuVI versus NpVI indicates weaker Pu═Oeq versus Np═Oeq bonding. Adsorption of O2 by the U:U complex suggests oxidation of UV to UVI, corroborating the assignment of perchlorate [(AnVO2)2(ClO4)3]-. DFT predicts the O2 adducts are [(AnVIO2)(O2)(AnVIO2)(ClO4)3]- with actinyls oxidized from +V to +VI by bridging peroxide, O22-. In accordance with reactivity, O2- addition is computed as substantially exothermic for U:U and least favorable for Pu:Pu. Collision-induced dissociation of native complexes eliminated ClO2 to yield [(AnO2)(O)2(AnO2)(ClO4)2]-, in which fragmented O atoms bridge as oxyl O-• and oxo O2- to yield uranyl(VI) and plutonyl(VI), or as oxos O2- to yield neptunyl(VII), [Oyl═NpVII═Oyl]3+.

4.
Inorg Chem ; 59(7): 4554-4566, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32212691

RESUMO

The isolated gas-phase actinide dioxide dications, AnO22+, were evaluated by DFT and coupled cluster CCSD(T) calculations for 12 actinides, An = U-Lr. CASSCF calculations were used to define the orbitals for the CCSD(T) calculations. The characteristic linear [O═An═O]2+ hexavalent actinyl(VI) was found to be the lowest energy structure for An = U, Np, and Pu, which also form stable actinyl(VI) species in solution and possibly for Am when spin-orbit effects are included. For Am, there is a divalent [AnII(O2)]2+ structure where the dioxygen is an end-on physisorbed η1-3O2 2 kcal/mol above the actinyl when spin-orbit effects are included which lower the energy of the actinyl structure. For An = Cm, Bk, and Lr, the lowest energy structure is trivalent [AnIII(O2-)]2+ where the dioxygen is a side-on superoxide, η2-O2-. For Cm, the actinyl is close in energy to the ground state when spin-orbit effects are included. For An = Cf, Es, Fm, Md, and No, the lowest energy structure is divalent [AnII(O2)]2+ where the dioxygen is an end-on physisorbed η1-3O2. The relative energies suggest that curyl(VI) and berkelyl(VI), like well-known americyl(VI), might be stabilized by coordinating ligands in condensed phases. The results further indicate that for californyl and beyond, the actinyl(VI) moieties will probably be elusive even using strong donor ligands. The prevalence of low oxidation states (OSs) An(II) and An(III) for transplutonium actinides reflects stabilization of the 5f orbitals and validates established trends, including the remarkably high stability of divalent No. Bond distances and other parameters suggest maximum bond covalency around plutonyl(VI), with a particularly substantial decrease in bond strength between americyl(VI) and curyl(VI).

5.
Phys Chem Chem Phys ; 22(22): 12403-12411, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32452480

RESUMO

The anions pertechnetate, TcO4-, and perrhenate, ReO4-, exhibit very similar chemical and physical properties. Revealing and understanding disparities between them enhances fundamental understanding of both. Electrospray ionization generated the gas-phase proton bound dimer (TcO4-)(H+)(ReO4-). Collision induced dissociation of the dimer yielded predominantly HTcO4 and ReO4-, which according to Cooks' kinetic method indicates that the proton affinity (PA) of TcO4- is greater than that of ReO4-. Density functional theory computations agree with the experimental observation, providing PA[TcO4-] = 300.1 kcal mol-1 and PA[ReO4-] = 297.2 kcal mol-1. Attempts to rationalize these relative PAs based on elementary molecular parameters such as atomic charges indicate that the entirety of bond formation and concomitant bond disruption needs to be considered to understand the energies associated with such protonation processes. Although in both the gas and solution phases, TcO4- is a stronger base than ReO4-, it is noted that the significance of even such qualitative accordance is tempered by the very different natures of the underlying phenomena.

6.
J Phys Chem A ; 124(15): 2982-2990, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32207621

RESUMO

Bis-triazinyl pyridines (BTPs) exhibit solution selectivity for trivalent americium over lanthanides (Ln), the origins of which remain uncertain. Here, electrospray ionization was used to generate gas-phase complexes [ML3]3+, where M = La, Lu, or Am and L is EtBTP 2,6-bis(5,6-diethyl-1,2,4-triazin-3-yl)-pyridine. Collision-induced dissociation (CID) of [ML3]3+ in the presence of H2O yielded a protonated ligand [L(H)]+ and hydroxide [ML2(OH)]2+ or hydrate [ML(L-H)(H2O)]2+, where (L-H)- is a deprotonated ligand. Although solution affinities indicate stronger binding of BTPs toward Am3+ versus Ln3+, the observed CID process is contrastingly more facile for M = Am versus Ln. To understand the disparity, density functional theory was employed to compute potential energy surfaces for two possible CID processes, for M = La and Am. In accordance with the CID results, both the rate determining transition state barrier and the net energy are lower for [AmL3]3+ versus [LaL3]3+ and for both product isomers, [ML2(OH)]2+ and [ML(L-H)(H2O)]2+. More facile removal of a ligand from [AmL3]3+ by CID does not necessarily contradict stronger Am3+-L binding, as inferred from solution behavior. In particular, the formation of new bonds in the products can distort kinetics and thermodynamics expected for simple bond cleavage reactions. In addition to correctly predicting the seemingly anomalous CID behavior, the computational results indicate greater participation of Am 5f versus La 4f orbitals in metal-ligand bonding.

7.
Chem Soc Rev ; 48(13): 3550-3591, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31120469

RESUMO

Because of their interesting structures and bonding and potentials as motifs for new nanomaterials, size-selected boron clusters have received tremendous interest in recent years. In particular, boron cluster anions (Bn-) have allowed systematic joint photoelectron spectroscopy and theoretical studies, revealing predominantly two-dimensional structures. The discovery of the planar B36 cluster with a central hexagonal vacancy provided the first experimental evidence of the viability of 2D borons, giving rise to the concept of borophene. The finding of the B40 cage cluster unveiled the existence of fullerene-like boron clusters (borospherenes). Metal-doping can significantly extend the structural and bonding repertoire of boron clusters. Main-group metals interact with boron through s/p orbitals, resulting in either half-sandwich-type structures or substitutional structures. Transition metals are more versatile in bonding with boron, forming a variety of structures including half-sandwich structures, metal-centered boron rings, and metal-centered boron drums. Transition metal atoms have also been found to be able to be doped into the plane of 2D boron clusters, suggesting the possibility of metalloborophenes. Early studies of di-metal-doped boron clusters focused on gold, revealing ladder-like boron structures with terminal gold atoms. Recent observations of highly symmetric Ta2B6- and Ln2Bn- (n = 7-9) clusters have established a family of inverse sandwich structures with monocyclic boron rings stabilized by two metal atoms. The study of size-selected boron and doped-boron clusters is a burgeoning field of research. Further investigations will continue to reveal more interesting structures and novel chemical bonding, paving the foundation for new boron-based chemical compounds and nanomaterials.

8.
J Stroke Cerebrovasc Dis ; 29(3): 104602, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31924485

RESUMO

BACKGROUND: Dysphagia is a common symptom seen in stroke patients, it not only affects patients' nutrition supply, but also causes aspiration pneumonia. To solve the problem of nutritional support for patients with dysphagia after stroke, nasogastric tubes are routinely indwelling to provide nutrition in China. However, this feeding method sometimes causes food reflux, aspiration, pneumonia, and often affects the patients' comfort and self-image acceptance. AIM: The aim of this study was to determine whether a new feeding method called intermittent oroesophageal (IOE) tube feeding compared with continuous nasogastric tube feeding as a practical and beneficial mean of decreasing the rate of stroke associated pneumonia (SAP), and improving patients' swallowing function, comfort, psychological status. DESIGN: This was an assessor-blinded, single-center, randomized controlled trial. METHODS: Ninety-seven hospitalized stroke patients with dysphagia in the rehabilitation department from January to December 2018 were randomized to a control group and an intervention group. Patients in both groups received routine nursing, rehabilitation treatment and swallowing therapy. Patients in the intervention group were given IOE tube feeding, while those in the control group were fed by indwelling nasogastric tube. Outcomes were assessed at admission, discharge or the end of the tube feeding. RESULTS: The incidence of SAP in the intervention group was 16.33% lower than that (31.25%) in the control group; the comfort score (2.08 ± .64), anxiety score (10.98 ± 2.28), depression score (7.39 ± 2.16) were lower than those (3.02 ± .70), (12.10 ± 2.18), (8.42 ± 2.34) in the control group. The improvement rate of swallowing function in the intervention group was 83.67% higher than that (66.67%) in the control group (all P < .05). CONCLUSIONS: The IOE tube feeding compared with continuous tube feeding may reduce the incidence of SAP, and improve patients' swallowing function, comfort, psychological status in patients with dysphagia after stroke.


Assuntos
Transtornos de Deglutição/terapia , Deglutição , Nutrição Enteral/métodos , Estado Nutricional , Pneumonia Aspirativa/prevenção & controle , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/terapia , Idoso , China , Transtornos de Deglutição/diagnóstico , Transtornos de Deglutição/etiologia , Transtornos de Deglutição/fisiopatologia , Nutrição Enteral/efeitos adversos , Feminino , Nível de Saúde , Humanos , Masculino , Saúde Mental , Pessoa de Meia-Idade , Pneumonia Aspirativa/diagnóstico , Pneumonia Aspirativa/etiologia , Pneumonia Aspirativa/fisiopatologia , Recuperação de Função Fisiológica , Fatores de Risco , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/efeitos adversos , Fatores de Tempo , Resultado do Tratamento
9.
Inorg Chem ; 58(20): 14005-14014, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31556998

RESUMO

Swapping of an oxygen atom of water with that of a pentavalent actinide dioxide cation, AnO2+ also called an "actinyl", requires activation of an An-O bond. It was previously found that such oxo exchange in the gas phase occurs for the first two actinyls, PaO2+ and UO2+, but not the next two, NpO2+ and PuO2+. The An-O bond dissociation energies (BDEs) decrease from PaO2+ to PuO2+, such that the observation of a parallel decrease in the An-O bond reactivity is intriguing. To elucidate oxo exchange, we here extend experimental studies to AmO2+, americyl(V), and CmO2+, curyl(V), which were produced in remarkable abundance by electrospray ionization of Am3+ and Cm3+ solutions. Like other AnO2+, americyl(V) and curyl(V) adsorb up to four H2O molecules to form tetrahydrates AnO2(H2O)4+ with the actinide hexacoordinated by oxygen atoms. It was found that AmO2+ does not oxo-exchange, whereas CmO2+ does, establishing a "turn" to increasing the reactivity from americyl to curyl, which validates computational predictions. Because oxo exchange occurs via conversion of an actinyl(V) hydrate, AnO2(H2O)+, to an actinide(V) hydroxide, AnO(OH)2+, it reflects the propensity for actinyl(V) hydrolysis: PaO2+ hydrolyzes and oxo-exchanges most easily, despite the fact that it has the highest BDE of all AnO2+. A reexamination of the computational results for actinyl(V) oxo exchange reveals distinctive properties and chemistry of curyl(V) species, particularly CmO(OH)2+.

10.
Inorg Chem ; 58(1): 411-418, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30543295

RESUMO

Lanthanide elements typically exhibit a +III oxidation state (OS) in chemical compounds with a few in +IV or even +V OS. Although lanthanides with +II OS have been observed recently in organometallic compounds, +I OS is extremely rare. Using a joint photoelectron spectroscopy and quantum theoretical study, we have found two low OS lanthanides in doped boron clusters, PrB3- and PrB4-. These two clusters are shown to have planar structures, in which the Pr atom is bonded to the aromatic boron clusters via two Pr-B σ bonds. Chemical bonding and electronic structure analyses reveal that the Pr atom is in a very low OS in the two boride clusters: +II in PrB3- and +I in PrB4-. The current finding suggests that there should exist a whole class of boride complexes featuring rather low-valent lanthanides and expands the frontier of lanthanide chemistry.

11.
Hippocampus ; 27(2): 122-133, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27784133

RESUMO

Amyloid ß protein (Aß) plays a critical role in pathogenesis of Alzheimer's disease (AD). Our previous studies indicated that the sequence 31-35 in Aß molecule is an effective active center responsible for Aß neurotoxicity in vivo and in vitro. In the present study, we prepared a novel antibody specifically targeting the sequence 31-35 of amyloid ß protein, and investigated the neuroprotection of the anti-Aß31-35 antibody against Aß1-42 -induced impairments in neuronal viability, spatial memory, and hippocampal synaptic plasticity in rats. The results showed that the anti-Aß31-35 antibody almost equally bound to both Aß31-35 and Aß1-42 , and pretreatment with the antibody dose-dependently prevented Aß1-42 -induced cytotoxicity on cultured primary cortical neurons. In behavioral study, intracerebroventricular (i.c.v.) injection of anti-Aß31-35 antibody efficiently attenuated Aß1-42 -induced impairments in spatial learning and memory of rats. In vivo electrophysiological experiments further indicated that Aß1-42 -induced suppression of hippocampal synaptic plasticity was effectively reversed by the antibody. These results demonstrated that the sequence 31-35 of Aß may be a new therapeutic target, and the anti-Aß31-35 antibody could be a novel immunotheraputic approach for the treatment of AD. © 2016 Wiley Periodicals, Inc.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/toxicidade , Anticorpos/imunologia , Imunoterapia , Neuroproteção , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Região CA1 Hipocampal/fisiologia , Sobrevivência Celular , Células Cultivadas , Córtex Cerebral , Modelos Animais de Doenças , Relação Dose-Resposta Imunológica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Aprendizagem em Labirinto , Neurônios/fisiologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Ratos Wistar , Memória Espacial
12.
Angew Chem Int Ed Engl ; 56(32): 9551-9555, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28614618

RESUMO

Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB2 O- and Bi2 B- , containing triple and double B-Bi bonds are presented. The BiB2 O- and Bi2 B- clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB2 O- ([Bi≡B-B≡O]- ) and Bi2 B- ([Bi=B=Bi]- ), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding.

13.
Angew Chem Int Ed Engl ; 56(24): 6916-6920, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28481035

RESUMO

The structure and bonding of a Pr-doped boron cluster (PrB7- ) are investigated using photoelectron spectroscopy and quantum chemistry. The adiabatic electron detachment energy of PrB7- is found to be low [1.47(8) eV]. A large energy gap is observed between the first and second detachment features, indicating a highly stable neutral PrB7 . Global minimum searches and comparison between experiment and theory show that PrB7- has a half-sandwich structure with C6v symmetry. Chemical bonding analyses show that PrB7- can be viewed as a PrII [η7 -B73- ] complex with three unpaired electrons, corresponding to a Pr (4f2 6s1 ) open-shell configuration. Upon detachment of the 6s electron, the neutral PrB7 cluster is a highly stable PrIII [η7 -B73- ] complex with Pr in its favorite +3 oxidation state. The B73- ligand is found to be highly stable and doubly aromatic with six delocalized π and six delocalized σ electrons and should exist for a series of lanthanide MIII [η7 -B73- ] complexes.

14.
Phys Chem Chem Phys ; 18(42): 29147-29155, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27730232

RESUMO

Size-selected boron clusters have been found to be predominantly planar or quasi-planar (2D) in the small size regime with the appearance of three-dimensional (3D) borospherene cages of larger sizes. A seashell-like B28- cluster was previously shown to be the smallest borospherene, which competes with a quasi-planar isomer for the global minimum. Here we report a study on the structures and bonding of the B29- and B29 clusters using photoelectron spectroscopy (PES) and first-principles calculations and demonstrate the continued competition between the 2D and borospherene structures. The PES spectrum of B29- displays a complex pattern with evidence of low-lying isomers. Global-minimum searches and extensive theoretical calculations revealed a complicated potential energy surface for B29- with five low-lying isomers, among which the lowest three were shown to contribute to the experimental spectrum. A 3D seashell-like Cs (2, 1A') isomer, featuring two heptagons on the waist and one octagon at the bottom, is the global minimum for B29-, followed by a 2D C1 (3, 1A) isomer with a hexagonal hole and a stingray-shaped 2D Cs (1, 1A') isomer with a pentagonal hole. However, by taking into account the entropic effects, the stingray-shaped isomer 1 was shown to be the lowest in energy at room temperature and was found to dominate the PES spectrum. Isomers 2 and 3, which have lower electron binding energies, were also found to be present in the experiment. Chemical bonding analyses showed that isomer 1 is an all-boron analogue of benzo[ghi]fluoranthene (C18H10), whereas the borospherene isomer 2 possesses 18π electrons, conforming to the 2(N + 1)2 electron counting rule for spherical aromaticity. For the B29 neutral cluster, the seashell-like borospherene isomer is the global minimum, significantly lower in energy than the stingray-shaped quasi-planar structure.

15.
J Phys Chem A ; 120(7): 1084-96, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26825216

RESUMO

Uranium oxide clusters UOx(-) (x = 3-5) were produced by laser vaporization and characterized by photoelectron spectroscopy and quantum theory. Photoelectron spectra were obtained for UOx(-) at various photon energies with well-resolved detachment transitions and vibrational resolution for x = 3 and 4. The electron affinities of UOx were measured as 1.12, 3.60, and 4.02 eV for x = 3, 4, and 5, respectively. The geometric and electronic structures of both the anions and the corresponding neutrals were investigated by quasi-relativistic electron-correlation quantum theory to interpret the photoelectron spectra and to provide insight into their chemical bonding. For UOx clusters with x ≤ 3, the O atoms appear as divalent closed-shell anions around the U atom, which is in various oxidation states from U(II)(fds)(4) in UO to U(VI)(fds)(0) in UO3. For x > 3, there are no longer sufficient valence electrons from the U atom to fill the O(2p) shell, resulting in fractionally charged and multicenter delocalized valence states for the O ligands as well as η(1)- or η(2)-bonded O2 units, with unusual spin couplings and complicated electron correlations in the unfilled poly oxo shell. The present work expands our understanding of both the bonding capacities of actinide elements with extended spdf valence shells as well as the multitude of oxygen's charge and bonding states.

16.
J Chem Phys ; 144(15): 154310, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27389223

RESUMO

We report the observation of a manganese-centered tubular boron cluster (MnB16 (-)), which is characterized by photoelectron spectroscopy and ab initio calculations. The relatively simple pattern of the photoelectron spectrum indicates the cluster to be highly symmetric. Ab initio calculations show that MnB16 (-) has a Mn-centered tubular structure with C4v symmetry due to first-order Jahn-Teller effect, while neutral MnB16 reduces to C2v symmetry due to second-order Jahn-Teller effect. In MnB16 (-), two unpaired electrons are observed, one on the Mn 3dz(2) orbital and another on the B16 tube, making it an unusual biradical. Strong covalent bonding is found between the Mn 3d orbitals and the B16 tube, which helps to stabilize the tubular structure. The current result suggests that there may exist a whole class of metal-stabilized tubular boron clusters. These metal-doped boron clusters provide a new bonding modality for transition metals, as well as a new avenue to design boron-based nanomaterials.

17.
J Chem Phys ; 144(8): 084309, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26931704

RESUMO

The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

18.
J Chem Phys ; 144(6): 064307, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26874488

RESUMO

Free-standing boron nanocages or borospherenes have been observed recently for B40(-) and B40. There is evidence that a family of borospherenes may exist. However, the smallest borospherene is still not known. Here, we report experimental and computational evidence of a seashell-like borospherene cage for B28(-) and B28. Photoelectron spectrum of B28(-) indicated contributions from different isomers. Theoretical calculations showed that the seashell-like B28(-) borospherene is competing for the global minimum with a planar isomer and it is shown to be present in the cluster beam, contributing to the observed photoelectron spectrum. The seashell structure is found to be the global minimum for neutral B28 and the B28(-) cage represents the smallest borospherene observed to date. It is composed of two triangular close-packed B15 sheets, interconnected via the three corners by sharing two boron atoms. The B28 borospherene was found to obey the 2(n + 1)(2) electron-counting rule for spherical aromaticity.

19.
Angew Chem Int Ed Engl ; 55(26): 7358-63, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27094830

RESUMO

Monolayer-boron (borophene) has been predicted with various atomic arrangements consisting of a triangular boron lattice with hexagonal vacancies. Its viability was confirmed by the observation of a planar hexagonal B36 cluster with a central six-membered ring. Here we report a planar boron cluster doped with a transition-metal atom in the boron network (CoB18 (-) ), suggesting the prospect of forming stable hetero-borophenes. The CoB18 (-) cluster was characterized by photoelectron spectroscopy and quantum chemistry calculations, showing that its most stable structure is planar with the Co atom as an integral part of a triangular boron lattice. Chemical bonding analyses show that the planar CoB18 (-) is aromatic with ten π-electrons and the Co atom has strong covalent interactions with the surrounding boron atoms. The current result suggests that transition metals can be doped into the planes of borophenes to create metallo-borophenes, opening vast opportunities to design hetero-borophenes with tunable chemical, magnetic, and optical properties.

20.
J Phys Chem A ; 118(28): 5204-11, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24964367

RESUMO

We have produced an auro-aluminum oxide cluster, Au2(AlO)2(-), as a possible model for an Au-alumina interface and investigated its electronic and structural properties using photoelectron spectroscopy and density functional theory. An extremely large energy gap (3.44 eV) is observed between the lowest unoccupied and the highest occupied molecular orbitals of Au2(AlO)2, suggesting its high electronic stability. The global minima of both Au2(AlO)2(-) and Au2(AlO)2 are found to have D2h symmetry with the two Au atoms bonded to the Al atoms of a nearly square-planar (AlO)2 unit. Chemical bonding analyses reveal a strong σ bond between Au and Al, as well as a completely delocalized π bond over the (AlO)2 unit, rendering aromatic character to the Au2(AlO)2 cluster. The high electronic stability and novel chemical bonding uncovered for Au2(AlO)2 suggest that it may be susceptible to chemical syntheses as a stable compound if appropriate ligands can be found.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa