RESUMO
Hydrogen is well known to embrittle high-strength steels and impair their corrosion resistance. One of the most attractive methods to mitigate hydrogen embrittlement employs nanoprecipitates, which are widely used for strengthening, to trap and diffuse hydrogen from enriching at vulnerable locations within the materials. However, the atomic origin of hydrogen-trapping remains elusive, especially in incoherent nanoprecipitates. Here, by combining in-situ scanning Kelvin probe force microscopy and aberration-corrected transmission electron microscopy, we unveil distinct scenarios of hydrogen-precipitate interaction in a high-strength low-alloyed martensitic steel. It is found that not all incoherent interfaces are trapping hydrogen; some may even exclude hydrogen. Atomic-scale structural and chemical features of the very interfaces suggest that carbon/sulfur vacancies on the precipitate surface and tensile strain fields in the nearby matrix likely determine the hydrogen-trapping characteristics of the interface. These findings provide fundamental insights that may lead to a better coupling of precipitation-strengthening strategy with hydrogen-insensitive designs.
RESUMO
308L welding duplex stainless steel has been irradiated at 360 °C with 2 MeV protons, corresponding to a dose of 3 dpa at the maximum depth of 20 µm. Microhardness of the δ-ferrite and austenite phases was studied before and after proton irradiation using in situ nanomechanical test system (ISNTS). The locations of the phases for indentations placement were obtained by scanning probe microscopy from the ISNTS. The hardness of the δ-ferrite had a close relationship with the vacancy distribution obtained from the Stopping and Range of Ions in Matter (SRIM) Monte Carlo simulation code. However, the hardness of the austenite phase in the maximum damage region (17â»20 µm depth) from the SRIM simulation was decreasing sharply, and a hardness transition region (>20 µm and <55 µm depth) was found between the maximum damage region (17â»20 µm depth) and the unirradiated region (>20 µm depth). However, the δ-ferrite hardness behavior was different. A hardness of the two phases increased on the irradiated surface and the interior due to different hardening mechanisms in the austenite and δ-ferrite phases after a long time high-temperature irradiation. A transition region (>20 µm and <55 µm depth) of the Volta potential was also found, which was caused by the deeper transfer of implanted protons measured by scanning Kelvin probe force microscopy.