RESUMO
Chronic stress induces depression- and anxiety-related behaviors, which are common mental disorders accompanied not only by dysfunction of the brain but also of the intestine. Activating transcription factor 4 (ATF4) is a stress-induced gene, and we previously show that it is important for gut functions; however, the contribution of the intestinal ATF4 to stress-related behaviors is not known. Here, we show that chronic stress inhibits the expression of ATF4 in gut epithelial cells. ATF4 overexpression in the colon relieves stress-related behavioral alterations in male mice, as measured by open-field test, elevated plus-maze test, and tail suspension test, whereas intestine-specific ATF4 knockout induces stress-related behavioral alterations in male mice. Furthermore, glutamatergic neurons are inhibited in the paraventricular thalamus (PVT) of two strains of intestinal ATF4-deficient mice, and selective activation of these neurons alleviates stress-related behavioral alterations in intestinal ATF4-deficient mice. The highly expressed gut-secreted peptide trefoil factor 3 (TFF3) is chosen from RNA-Seq data from ATF4 deletion mice and demonstrated decreased in gut epithelial cells, which is directly regulated by ATF4. Injection of TFF3 reverses stress-related behaviors in ATF4 knockout mice, and the beneficial effects of TFF3 are blocked by inhibiting PVT glutamatergic neurons using DREADDs. In summary, this study demonstrates the function of ATF4 in the gut-brain regulation of stress-related behavioral alterations, via TFF3 modulating PVT neural activity. This research provides evidence of gut signals regulating stress-related behavioral alterations and identifies possible drug targets for the treatment of stress-related behavioral disorders.
Assuntos
Fator 4 Ativador da Transcrição , Tálamo , Masculino , Animais , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Tálamo/metabolismo , Neurônios/metabolismo , Camundongos Knockout , Colo/metabolismoRESUMO
Impairment of gluconeogenesis is a key factor responsible for hyperglycemia in patients with type 2 diabetes. As an important member of the suppressors of cytokine signaling (SOCS) protein family, many physiological functions of cytokine-inducible SH2-containing protein (CISH) have been described; however, the role of hepatic CISH in gluconeogenesis is poorly understood. In the present study, we observed that hepatic CISH expression was reduced in fasted wild-type (WT) mice. Overexpression of CISH decreased glucose production in mouse primary hepatocytes, while silencing of CISH had the opposite effects. In addition, adenovirus-mediated hepatic CISH overexpression resulted in improved glucose tolerance and decreased gluconeogenesis in WT and leptin receptor-deficient diabetic (db/db) mice. In contrast, adenovirus-mediated hepatic CISH knockdown impaired glucose tolerance and increased gluconeogenesis in WT mice. We also generated liver-specific CISH knockout (LV-CISH KO) mice and discovered that these mice had a similar phenotype in glucose tolerance and gluconeogenesis as mice injected with adenoviruses that knockdown CISH expression. Mechanistically, we found that CISH overexpression decreased and CISH knockdown increased the mRNA and protein levels of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase 1 (PEPCK), two key enzymes involved in gluconeogenesis, in vitro, and in vivo. Moreover, we discovered that the phosphorylation of cAMP-responsive element binding protein 1 (CREB), a transcription factor of G6pase and Pepck, was required for regulating gluconeogenesis by CISH. Taken together, this study identifies hepatic CISH as an important regulator of gluconeogenesis. Our results also provide important insights into the metabolic functions of the SOCS protein family and the potential targets for the treatment of diabetes.
Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Gluconeogênese , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Glucose-6-Fosfatase/genética , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Insomnia is extremely common and is a risk factor for a variety of physical and psychological disorders in addition to contributing to the reduced quality of life of patients and the burden of healthcare costs. Although cognitive behavioral therapy is the first-line treatment for insomnia, its difficulty of access and high cost have hindered its application. Therefore, pharmacotherapy remains the common treatment choice for patients and clinicians. Existing chemical drugs including benzodiazepine receptor agonists, dual orexin receptor antagonists, melatonin and its receptor agonists, histamine antagonists, antidepressants, and antipsychotics are able to induce and/or maintain sleep and have good therapeutic effects on acute insomnia, but their efficacy on chronic insomnia is indefinite. Furthermore, they have several side effects and affect sleep structure and physiological function. Under the guiding principle of holistic view and treatment based on syndrome differentiation, traditional Chinese medicine(TCM) has shown a good effect in clinical practice, but with little high-grade clinical evidence. The mechanism, dose, half-life period, adjustment of sleep structure, and side effects of hypnotic drugs are key factors to be considered for clinical use. This paper analyzed and summarized the drugs for insomnia from the above aspects, and is expected to provide references for the application and development of sedative and hypnotic drugs.
Assuntos
Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/induzido quimicamente , Qualidade de Vida , Sono , Hipnóticos e Sedativos/uso terapêutico , Hipnóticos e Sedativos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/farmacologiaRESUMO
We have previously shown that leucine deprivation stimulates browning and lipolysis in white adipose tissue (WAT), which helps to treat obesity. Adipose tissue macrophages (ATMs) significantly influence WAT browning and lipolysis. However, it is unclear whether ATMs are involved in leucine deprivation-induced browning and lipolysis in WAT; the associated signals remain to be elucidated. Here, we investigated the role of ATMs and the possible mechanisms involved in WAT browning and lipolysis under leucine-deprivation conditions. In this study, macrophages were depleted in mice by injecting clodronate-liposomes (CLOD) into subcutaneous white adipose tissues. Then, mice lacking general control nonderepressible 2 kinase (GCN2), which is a sensor of amino acid starvation, specifically in Lyz2-expressing cells, were generated to investigate the changes in leucine deprivation-induced WAT browning and lipolysis. We found leucine deprivation decreased the accumulation and changed the polarization of ATMs. Ablation of macrophages by CLOD impaired WAT browning and lipolysis under leucine-deprivation conditions. Mechanistically, leucine deprivation activated GCN2 signals in macrophages. Myeloid-specific abrogation of GCN2 in mice blocked leucine deprivation-induced browning and lipolysis in WAT. Further analyses revealed that GCN2 activation in macrophages reduced the expression of monoamine oxidase A (MAOA), resulting in increased norepinephrine (NE) secretion from macrophages to adipocytes, and this resulted in enhanced WAT browning and lipolysis. Moreover, the injection of CL316,243, a ß3-adrenergic receptor agonist, and inhibition of MAOA effectively increased the level of NE, leading to the enhancement of browning and lipolysis of WAT in myeloid GCN2 knockout mice under leucine deprivation. Collectively, our results demonstrate a novel function of GCN2 signals in macrophages, that is, regulating WAT browning and lipolysis under leucine deprivation. Our study provides important hints for possible treatment for obesity.
Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Leucina/deficiência , Lipólise , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Metabolismo Energético , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , TermogêneseRESUMO
Sinosolenaia oleivora (Bivalve, Unionida, Unionidae), is a near-endangered edible mussel. In 2022, it was selected by the Ministry of Agriculture and Rural Affairs as a top-ten aquatic germplasm resource, with potential for industrial development. Using Illumina, PacBio, and Hi-C technology, a high-quality chromosome-level genome of S. oleivora was assembled. The assembled S. oleivora genome spanned 2052.29 Mb with a contig N50 size of 20.36 Mb and a scaffold N50 size of 103.57 Mb. The 302 contigs, accounting for 98.41% of the total assembled genome, were anchored into 19 chromosomes using Hi-C scaffolding. A total of 1171.78 Mb repeat sequences were annotated and 22,971 protein-coding genes were predicted. Compared with the nearest ancestor, a total of 603 expanded and 1767 contracted gene families were found. This study provides important genomic resources for conservation, evolutionary research, and genetic improvements of many economic traits like growth performance.
Assuntos
Cromossomos , Genoma , Animais , Unionidae/genética , Bivalves/genéticaRESUMO
Gut microbiota is linked to human metabolic diseases. The previous work showed that leucine deprivation improved metabolic dysfunction, but whether leucine deprivation alters certain specific species of bacterium that brings these benefits remains unclear. Here, this work finds that leucine deprivation alters gut microbiota composition, which is sufficient and necessary for the metabolic improvements induced by leucine deprivation. Among all the affected bacteria, B. coccoides is markedly increased in the feces of leucine-deprived mice. Moreover, gavage with B. coccoides improves insulin sensitivity and reduces body fat in high-fat diet (HFD) mice, and singly colonization of B. coccoides increases insulin sensitivity in gnotobiotic mice. The effects of B. coccoides are mediated by metabolizing tryptophan into indole-3-acetic acid (I3AA) that activates the aryl hydrocarbon receptor (AhR) in the liver. Finally, this work reveals that reduced fecal B. coccoides and I3AA levels are associated with the clinical metabolic syndrome. These findings suggest that B. coccoides is a newly identified bacterium increased by leucine deprivation, which improves metabolic disorders via metabolizing tryptophan into I3AA.
Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Leucina , Camundongos Endogâmicos C57BL , Animais , Camundongos , Leucina/metabolismo , Microbioma Gastrointestinal/fisiologia , Microbioma Gastrointestinal/genética , Masculino , Doenças Metabólicas/metabolismo , Doenças Metabólicas/microbiologia , Dieta Hiperlipídica , Resistência à Insulina/fisiologia , Triptofano/metabolismo , Ácidos Indolacéticos/metabolismo , Fezes/microbiologia , Clostridiales/metabolismo , Clostridiales/genética , HumanosRESUMO
The central nervous system has been implicated in the age-induced reduction in adipose tissue lipolysis. However, the underlying mechanisms remain unclear. Here, we show the expression of SLC7A14 is reduced in proopiomelanocortin (POMC) neurons of aged mice. Overexpression of SLC7A14 in POMC neurons alleviates the aging-reduced lipolysis, whereas SLC7A14 deletion mimics the age-induced lipolysis impairment. Metabolomics analysis reveals that POMC SLC7A14 increased taurochenodeoxycholic acid (TCDCA) content, which mediates the SLC7A14 knockout- or age-induced WAT lipolysis impairment. Furthermore, SLC7A14-increased TCDCA content is dependent on intestinal apical sodium-dependent bile acid transporter (ASBT), which is regulated by intestinal sympathetic afferent nerves. Finally, SLC7A14 regulates the intestinal sympathetic afferent nerves by inhibiting mTORC1 signaling through inhibiting TSC1 phosphorylation. Collectively, our study suggests the function for central SLC7A14 and an upstream mechanism for the mTORC1 signaling pathway. Moreover, our data provides insights into the brain-gut-adipose tissue crosstalk in age-induced lipolysis impairment.
Assuntos
Tecido Adiposo Branco , Envelhecimento , Sistema y+ de Transporte de Aminoácidos , Hipotálamo , Lipólise , Animais , Masculino , Camundongos , Tecido Adiposo Branco/metabolismo , Envelhecimento/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Hipotálamo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética , Transdução de Sinais , Simportadores/metabolismo , Simportadores/genéticaRESUMO
Lysosomal amino acid accumulation is implicated in several diseases, but its role in insulin resistance, the central mechanism to type 2 diabetes and many metabolic diseases, is unclear. In this study, we show the hepatic expression of lysosomal membrane protein solute carrier family 7 member 14 (SLC7A14) is increased in insulin-resistant mice. The promoting effect of SLC7A14 on insulin resistance is demonstrated by loss- and gain-of-function experiments. SLC7A14 is further demonstrated as a transporter resulting in the accumulation of lysosomal γ-aminobutyric acid (GABA), which induces insulin resistance via inhibiting mTOR complex 2 (mTORC2)'s activity. These results establish a causal link between lysosomal amino acids and insulin resistance and suggest that SLC7A14 inhibition may provide a therapeutic strategy in treating insulin resistance-related and GABA-related diseases and may provide insights into the upstream mechanisms for mTORC2, the master regulator in many important processes.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Aminoácidos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Lisossomos/metabolismoRESUMO
An important role for liver in the regulation of adipose tissue thermogenesis upon cold exposure has been suggested; however, the underlying mechanisms remain incompletely defined. Here, we identify elevated serum bradykinin levels in response to acute cold exposure in male mice. A bolus of anti-bradykinin antibodies reduces body temperature during acute cold exposure, whereas bradykinin has the opposite effect. We demonstrate that bradykinin induces brown adipose tissue thermogenesis and white adipose tissue browning, and bradykinin increases uncoupling protein 1 (UCP1) expression in adipose tissue. The bradykinin B2 receptor (B2R), adrenergic signaling and nitric oxide signaling are involved in regulating bradykinin-increased UCP1 expression. Moreover, acute cold exposure inhibits hepatic prolyl endopeptidase (PREP) activity, causing reduced liver bradykinin degradation and increased serum bradykinin levels. Finally, by blocking the breakdown of bradykinin, angiotensin-converting enzyme inhibitors (ACEIs) increase serum bradykinin levels and induce brown adipose tissue thermogenesis and white adipose tissue browning via B2R. Collectively, our data provide new insights into the mechanisms underlying organ crosstalk in whole-body physiology control during cold exposure and also suggest bradykinin as a possible anti-obesity target.
Assuntos
Tecido Adiposo Branco , Obesidade , Camundongos , Masculino , Animais , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Termogênese , Fígado/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Temperatura Baixa , Camundongos Endogâmicos C57BLRESUMO
The state of charge (SOC) is one of the main indexes of the lithium-ion battery, which affects the practice range of new energy vehicles and the safety of the battery. Nevertheless, the value of SOC cannot be measured directly. At present, the algorithm for estimating the state of charge is not very satisfactory. The multilayer perceptron algorithm designed during this paper encompasses a sensible impact on state estimation. During this paper, the multilayer network is designed to estimate the charged state of lithium batteries from the three-layer artificial neural network to the eleven-layer artificial neural network. After preprocessing the dataset and comparing several activation functions, the ten-layer fully connected neural network is the most efficient to estimate the SOC. In order to prevent over-fitting of the multilayer perceptron algorithm, the two techniques of the BatchNormalization layer and Dropout layer work together to inhibit over-fitting. At the same time, the accuracy of extended Kalman filter, long and short memory network, and recurrent neural network are compared. The multilayer perceptron network designed during this paper has the highest accuracy. Finally, in the open dataset, both the training and test errors achieve good results. The algorithm developed in this paper has made some progress in SOC estimation.
RESUMO
Chronic inflammation in liver induces insulin resistance systemically and in other tissues, including the skeletal muscle (SM); however, the underlying mechanisms remain largely unknown. RNA sequencing of primary hepatocytes from wild-type mice fed long-term high-fat diet (HFD), which have severe chronic inflammation and insulin resistance revealed that the expression of hepatokine endoplasmic reticulum aminopeptidase 1 (ERAP1) was upregulated by a HFD. Increased ERAP1 levels were also observed in interferon-γ-treated primary hepatocytes. Furthermore, hepatic ERAP1 overexpression attenuated systemic and SM insulin sensitivity, whereas hepatic ERAP1 knockdown had the opposite effects, with corresponding changes in serum ERAP1 levels. Mechanistically, ERAP1 functions as an antagonist-like factor, which interacts with ß2 adrenergic receptor (ADRB2) and reduces its expression by decreasing ubiquitin-specific peptidase 33-mediated deubiquitination and thereby interrupts ADRB2-stimulated insulin signaling in the SM. The findings of this study indicate ERAP1 is an inflammation-induced hepatokine that impairs SM insulin sensitivity. Its inhibition may provide a therapeutic strategy for insulin resistance-related diseases, such as type 2 diabetes.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Aminopeptidases/genética , Aminopeptidases/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Resistência à Insulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor/metabolismo , Músculo Esquelético/metabolismoRESUMO
The browning of white adipose tissue (WAT) has got much attention for its potential beneficial effects on metabolic disorders, however, the nutritional factors and neuronal signals involved remain largely unknown. We sought to investigate whether WAT browning is stimulated by leucine deprivation, and whether the amino acid sensor, general control non-derepressible 2 (GCN2), in amygdalar protein kinase C-δ (PKC-δ) neurons contributes to this regulation. Our results show that leucine deficiency can induce WAT browning, which is unlikely to be caused by food intake, but is largely blocked by PKC-δ neuronal inhibition and amygdalar GCN2 deletion. Furthermore, GCN2 knockdown in amygdalar PKC-δ neurons blocks WAT browning, which is reversed by over-expression of amino acid responsive gene activating transcription factor 4 (ATF4), and is mediated by the activities of amygdalar PKC-δ neurons and the sympathetic nervous system. Our data demonstrate that GCN2/ATF4 can regulate WAT browning in amygdalar PKC-δ neurons under leucine deprivation.
Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Tecido Adiposo Branco/fisiologia , Tonsila do Cerebelo/fisiologia , Leucina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/inervação , Tonsila do Cerebelo/citologia , Animais , Técnicas de Silenciamento de Genes , Lipólise/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Proteína Quinase C-delta/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/fisiologia , Técnicas Estereotáxicas , Sistema Nervoso Simpático/fisiologia , Termogênese/fisiologiaRESUMO
OBJECTIVE: Although the hypothalamus is crucial for peripheral metabolism control, the signals in specific neurons involved remain poorly understood. The aim of our current study was to explore the role of the hypothalamic gene mothers against decapentaplegic homolog 7 (Smad7) in peripheral glucose disorders. METHODS: We studied glucose metabolism in high-fat diet (HFD)-fed mice and middle-aged mice with Cre-mediated recombination causing 1) overexpression of Smad7 in hypothalamic proopiomelanocortin (POMC) neurons, 2) deletion of Smad7 in POMC neurons, and 3) overexpression of protein kinase B (AKT) in arcuate nucleus (ARC) in Smad7 overexpressed mice. Intracerebroventricular (ICV) cannulation of insulin was used to test the hypothalamic insulin sensitivity in the mice. Hypothalamic primary neurons were used to investigate the mechanism of Smad7 regulating hypothalamic insulin signaling. RESULTS: We found that Smad7 expression was increased in POMC neurons in the hypothalamic ARC of HFD-fed or middle-aged mice. Furthermore, overexpression of Smad7 in POMC neurons disrupted the glucose balance, and deletion of Smad7 in POMC neurons prevented diet- or age-induced glucose disorders, which was likely to be independent of changes in body weight or food intake. Moreover, the effect of Smad7 was reversed by overexpression of AKT in the ARC. Finally, Smad7 decreased AKT phosphorylation by activating protein phosphatase 1c in hypothalamic primary neurons. CONCLUSIONS: Our results demonstrated that an excess of central Smad7 in POMC neurons disrupts glucose balance by attenuating hypothalamic insulin signaling. In addition, we found that this regulation was mediated by the activity of protein phosphatase 1c.