Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Nano Lett ; 24(22): 6673-6682, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779991

RESUMO

Reliably discerning real human faces from fake ones, known as antispoofing, is crucial for facial recognition systems. While neuromorphic systems offer integrated sensing-memory-processing functions, they still struggle with efficient antispoofing techniques. Here we introduce a neuromorphic facial recognition system incorporating multidimensional deep ultraviolet (DUV) optoelectronic synapses to address these challenges. To overcome the complexity and high cost of producing DUV synapses using traditional wide-bandgap semiconductors, we developed a low-temperature (≤70 °C) solution process for fabricating DUV synapses based on PEA2PbBr4/C8-BTBT heterojunction field-effect transistors. This method enables the large-scale (4-in.), uniform, and transparent production of DUV synapses. These devices respond to both DUV and visible light, showing multidimensional features. Leveraging the unique ability of the multidimensional DUV synapse (MDUVS) to discriminate real human skin from artificial materials, we have achieved robust neuromorphic facial recognition with antispoofing capability, successfully identifying genuine human faces with an accuracy exceeding 92%.

2.
Nano Lett ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269918

RESUMO

Solution-processable electrodes are promising for next-generation electronics due to their simplicity, cost-effectiveness, and potential for large-area fabrication. However, current solution-processable electrodes based on conductive polymers, carbon-based compounds, and metal nanowires face challenges related to stability, patterning, and production scalability. Here we introduce a novel approach using 3D tin halide perovskites (THPs) combined with a photolithography-free solution patterning technique to fabricate solution-processed electrodes. We demonstrate the preparation of highly conductive CsSnI3 films (234.9 S cm-1) and the fabrication of patterned 35 × 35 perovskite electrode arrays on a 4-in. silicon wafer. These electrodes, used as source/drain electrodes in organic transistors, resulted in devices showing high uniformity and stability. This electrode fabrication strategy is also applicable to other 3D THPs like FASnI3 and MASnI3, showcasing versatility for diverse applications. The results highlight the feasibility and advantages of using 3D THPs as solution-processable electrodes, providing a new material system for the advancement of solution-processed electronics.

3.
Mol Hum Reprod ; 30(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38310328

RESUMO

Preterm birth (PTB) is a major problem affecting perinatal health, directly increasing the mortality risk of mother and infant that often results from the breakdown of the maternal-fetal immune balance. Increasing evidence shows the essential role of mucosal-associated invariant T (MAIT) cells to balance antibacterial function and immune tolerance function during pregnancy. However, the phenotype and function of placental MAIT cells and their specific mechanisms in PTB remain unclear. Here, we report that MAIT cells in placentas from PTBs show increased activation levels and decreased IFN-γ secretion capacity compared with those from normal pregnancies. Moreover, our data indicate gravidity is a factor affecting placental MAIT cells during pregnancies. Multi-omics analysis indicated aberrant immune activation and abnormal increase of lipids and lipid-like metabolites in the PTB placental microenvironment. Moreover, the proportion and activation of MAIT cells were positively correlated with the abnormal increase of lipids and lipid-like metabolites. Together, our work revealed that abnormal activation and impaired function of MAIT cells may be related to abnormal elevation of lipids and lipid-like metabolites in PTB.


Assuntos
Células T Invariantes Associadas à Mucosa , Nascimento Prematuro , Recém-Nascido , Gravidez , Lactente , Humanos , Feminino , Placenta , Feto , Lipídeos
4.
Angew Chem Int Ed Engl ; 63(25): e202403015, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38623043

RESUMO

Ternary organic solar cells (T-OSCs) represent an efficient strategy for enhancing the performance of OSCs. Presently, the majority of high-performance T-OSCs incorporates well-established Y-acceptors or donor polymers as the third component. In this study, a novel class of conjugated small molecules has been introduced as the third component, demonstrating exceptional photovoltaic performance in T-OSCs. This innovative molecule comprises ethylenedioxythiophene (EDOT) bridge and 3-ethylrhodanine as the end group, with the EDOT unit facilitating the creation of multiple conformation locks. Consequently, the EDOT-based molecule exhibits two-dimensional charge transport, distinguishing it from the thiophene-bridged small molecule, which displays fewer conformation locks and provides one-dimensional charge transport. Furthermore, the robust electron-donating nature of EDOT imparts the small molecule with cascade energy levels relative to the electron donor and acceptor. As a result, OSCs incorporating the EDOT-based small molecule as the third component demonstrate enhanced mobilities, yielding a remarkable efficiency of 19.3 %, surpassing the efficiency of 18.7 % observed for OSCs incorporating thiophene-based small molecule as the third component. The investigations in this study underscore the excellence of EDOT as a building block for constructing conjugated materials with multiple conformation locks and high charge carrier mobilities, thereby contributing to elevated photovoltaic performance in OSCs.

5.
Small ; 19(35): e2301362, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37170715

RESUMO

Precise control of molecular assembly is of great significance in the application of functional molecules. This work has systematically investigated the humidity effect in bubble-assisted molecular assembly. This work finds humidity is critical in the evolution of the soft confined space, leading to the formation of microscale liquid confined space under high humidity, and nanoscale liquid confined space under low humidity. It is also revealed that the differences in surface wettability and adhesion play the key role. Consequently, a flat pattern with thermodynamically favorable ordered structure and a sharp pattern with dynamically favorable disordered structure are achieved, which show different solid-state photoisomerization behaviors and photoresponsiveness. Interestingly, conductivity of sharp pattern with disordered structure is higher than that of flat pattern with layered ordered structure due to electronic transport mechanism of different spatial dimensions. This work opens a new way for manipulating the molecular self-assembly to control the morphology and function of molecular patterns.

6.
Opt Express ; 31(16): 25545-25556, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710438

RESUMO

A high-performance towing cable hydrophone array based on an improved ultra-sensitive fiber-optic distributed acoustic sensing system (uDAS) with picostrain sensitivity is demonstrated and tested in sea trial, for the first time. A new composite transducer is designed and optimized to enhance the acoustic pressure sensitivity significantly. A sea trial is carried out to test the performances of such a hydrophone array, including flow noise, underwater acoustic signal capture capacity, beamforming processing and localization of artificial source targets. The array exhibits high sensitivity and low noise floor. An average sensitivity of -129.23 dB re rad/µPa at frequencies from 10 Hz to 1500 Hz has been achieved. The localization at distances of 5 km and 10 km is realized, respectively, validating the excellent remote detection and positioning capability of the hydrophone system. The proposed towing cable system, with high sensitivity, simple structure and remote target localization ability, may pave a way for development of the next generation of high-performance light-weighting hydrophone arrays for towing applications.

7.
Angew Chem Int Ed Engl ; 62(39): e202304632, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37338996

RESUMO

Non-benzenoid polycyclic aromatic hydrocarbons (PAHs) have received a lot of attention because of their unique optical, electronic, and magnetic properties, but their synthesis remains challenging. Herein, we report a non-benzenoid isomer of peri-tetracene, diazulenorubicene (DAR), with two sets of 5/7/5 membered rings synthesized by a (3+2) annulation reaction. Compared with the precursor containing only 5/7 membered rings, the newly formed five membered rings switch the aromaticity of the original heptagon/pentagon from antiaromatic/aromatic to non-aromatic/antiaromatic respectively, modify the intermolecular packing modes, and lower the LUMO levels. Notably, compound 2 b (DAR-TMS) shows p-type semiconducting properties with a hole mobility up to 1.27 cm2  V-1 s-1 . Moreover, further extension to larger non-benzenoid PAHs with 19 rings was achieved through on-surface chemistry from the DAR derivative with one alkynyl group.

8.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(7): 697-704, 2023 Jul 15.
Artigo em Chinês | MEDLINE | ID: mdl-37529951

RESUMO

OBJECTIVES: To investigate the risk factors for neonatal asphyxia in Hubei Enshi Tujia and Miao Autonomous Prefecture and establish a nomogram model for predicting the risk of neonatal asphyxia. METHODS: A retrospective study was conducted with 613 cases of neonatal asphyxia treated in 20 cooperative hospitals in Enshi Tujia and Miao Autonomous Prefecture from January to December 2019 as the asphyxia group, and 988 randomly selected non-asphyxia neonates born and admitted to the neonatology department of these hospitals during the same period as the control group. Univariate and multivariate analyses were used to identify risk factors for neonatal asphyxia. R software (4.2.2) was used to establish a nomogram model. Receiver operator characteristic curve, calibration curve, and decision curve analysis were used to assess the discrimination, calibration, and clinical usefulness of the model for predicting the risk of neonatal asphyxia, respectively. RESULTS: Multivariate logistic regression analysis showed that minority (Tujia), male sex, premature birth, congenital malformations, abnormal fetal position, intrauterine distress, maternal occupation as a farmer, education level below high school, fewer than 9 prenatal check-ups, threatened abortion, abnormal umbilical cord, abnormal amniotic fluid, placenta previa, abruptio placentae, emergency caesarean section, and assisted delivery were independent risk factors for neonatal asphyxia (P<0.05). The area under the curve of the model for predicting the risk of neonatal asphyxia based on these risk factors was 0.748 (95%CI: 0.723-0.772). The calibration curve indicated high accuracy of the model for predicting the risk of neonatal asphyxia. The decision curve analysis showed that the model could provide a higher net benefit for neonates at risk of asphyxia. CONCLUSIONS: The risk factors for neonatal asphyxia in Hubei Enshi Tujia and Miao Autonomous Prefecture are multifactorial, and the nomogram model based on these factors has good value in predicting the risk of neonatal asphyxia, which can help clinicians identify neonates at high risk of asphyxia early, and reduce the incidence of neonatal asphyxia.


Assuntos
Asfixia Neonatal , Nomogramas , Recém-Nascido , Humanos , Masculino , Gravidez , Feminino , Estudos Retrospectivos , Cesárea , Fatores de Risco , Asfixia Neonatal/epidemiologia , Asfixia Neonatal/etiologia
9.
Nanotechnology ; 33(32)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35447618

RESUMO

Photocatalytic hydrogen evolution (PHE) presents a promising way to solve the global energy crisis. Metal-free carbon nitride (CN) and organic semiconductors photocatalysts have drawn intense interests due to their fascinating properties such as tunable molecular structure, electronic states, strong visible-light absorption, low-cost etc. In this paper, the recent progresses of photocatalytic hydrogen production based on organic photocatalysts, including CN, linear polymers, conjugated porous polymers and small molecules, are reviewed, with emphasis on the various strategies to improve PHE efficiency. Finally, the possible future research trends in the organic photocatalysts are prospected.

10.
Sensors (Basel) ; 22(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35746382

RESUMO

To improve the detection ability of infrared small targets in complex backgrounds, an improved detection algorithm YOLO-SASE is proposed in this paper. The algorithm is based on the YOLO detection framework and SRGAN network, taking super-resolution reconstructed images as input, combined with the SASE module, SPP module, and multi-level receptive field structure while adjusting the number of detection output layers through exploring feature weight to improve feature utilization efficiency. Compared with the original model, the accuracy and recall rate of the algorithm proposed in this paper were improved by 2% and 3%, respectively, in the experiment, and the stability of the results was significantly improved in the training process.


Assuntos
Algoritmos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa