Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39274625

RESUMO

Al-Mg alloys are widely used as important engineering structural materials in aerospace engineering, transportation systems, and structural constructions due to their low density, high specific strength, corrosion resistance, welding capability, fatigue strength, and cost-effectiveness. However, the conventional Al-Mg alloys can no longer fully satisfy the demands of practical production due to difficulties caused by many defects. The high strength of Al-Mg alloys as non-heat treatment precipitation-strengthened alloys is achieved primarily by solid solution strengthening along with work hardening rather than precipitation strengthening. Therefore, severe plastic deformation (SPD) techniques can be often used to produce ultrafine-grained structures to fabricate ultra-high strength aluminum alloys. However, this approach often achieves the strengthening of material at the cost of reduced ductility. This paper comprehensively summarizes the various approaches of ultrafine/nanocrystalline materials for enhancing their plasticity, elaborates on the creation of a bimodal microstructure within the alloy, and discusses the formation of a nanotwin microstructure within the alloy and the incorporation of dispersed nanoparticles. The mechanisms underlying both the strengthening and toughening during large plastic deformation in aluminum alloys are summarized, and the future research direction of high-performance ultrafine crystalline and nanocrystalline Al-Mg aluminum alloys is prospected.

2.
Materials (Basel) ; 17(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38793520

RESUMO

Magnesium matrix composites are essential lightweight metal matrix composites, following aluminum matrix composites, with outstanding application prospects in automotive, aerospace lightweight and biomedical materials because of their high specific strength, low density and specific stiffness, good casting performance and rich resources. However, the inherent low plasticity and poor fatigue resistance of magnesium hamper its further application to a certain extent. Many researchers have tried many strengthening methods to improve the properties of magnesium alloys, while the relationship between wear resistance and plasticity still needs to be further improved. The nanoparticles added exhibit a good strengthening effect, especially the ceramic nanoparticles. Nanoparticle-reinforced magnesium matrix composites not only exhibit a high impact toughness, but also maintain the high strength and wear resistance of ceramic materials, effectively balancing the restriction between the strength and toughness. Therefore, this work aims to provide a review of the state of the art of research on the matrix, reinforcement, design, properties and potential applications of nano-reinforced phase-reinforced magnesium matrix composites (especially ceramic nanoparticle-reinforced ones). The conventional and potential matrices for the fabrication of magnesium matrix composites are introduced. The classification and influence of ceramic reinforcements are assessed, and the factors influencing interface bonding strength between reinforcements and matrix, regulation and design, performance and application are analyzed. Finally, the scope of future research in this field is discussed.

3.
Materials (Basel) ; 17(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39063745

RESUMO

As an important part of die steels, hot-work die steels are mainly used to manufacture molds made of solid metal or high-temperature liquid metal from heating to recrystallization temperature. In view of the requirements for mechanical properties and service life for hot-work die steel, it is conducive to improve the thermal fatigue resistance, wear resistance, and oxidation resistance of hot work die steel. In this review, the main failure modes of hot-work die steel were analyzed. Four traditional methods of strengthening and toughening die steel were summarized, including optimizing alloying elements, electroslag remelting, increasing the forging ratio, and heat treatment process enhancement. A new nano-strengthening method was introduced that aimed to refine the microstructure of hot-work abrasive steel and improve its service performance by adding nanoparticles into molten steel to achieve uniform dispersion. This review provides an overview to improve the service performance and service life of hot work die steel.

4.
Materials (Basel) ; 16(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37445064

RESUMO

It is well known that the development of lightweight alloys with improved comprehensive performance and application value are the future development directions for the ultra-high-strength 7xxx series Al-Zn-Mg-Cu alloys used in the aircraft field. As the lightest metal element in nature, lithium (Li) has outstanding advantages in reducing the density and increasing the elastic modulus in aluminum alloys, so Al-Zn-Mg-Cu alloys containing Li have gained widespread attention. Furthermore, since the Al-Zn-Mg-Cu alloy is usually strengthened by aging treatment, it is crucial to understand how Li addition affects its aging precipitation process. As such, in this article, the effects and mechanism of Li on the aging precipitation behavior and the impact of Li content on the aging precipitation phase of Al-Zn-Mg-Cu alloys are briefly reviewed, and the influence of Li on the service properties, including mechanical properties, wear resistance, and fatigue resistance, of Al-Zn-Mg-Cu alloys are explained. In addition, the corresponding development prospects and challenges of the Al-Zn-Mg-Cu-Li alloy are also proposed. This review is helpful to further understand the role of Li in Al-Zn-Mg-Cu alloys and provides a reference for the development of high-strength aluminum alloys containing Li with good comprehensive properties.

5.
Materials (Basel) ; 16(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37763513

RESUMO

In the general environment of lightweight automobiles, the integrated die-casting technology proposed by Tesla has become the general mode to better achieve weight reduction in automobiles. The die-casting mold required by integrated die-casting technology has the characteristics of large scale and complexity. Hence, higher requirements are put forward for the comprehensive performance of the die steel. Despite the stagnation in the progress of conventional strengthening methods, enhancing the performance of die steel has become increasingly challenging. Indeed, it necessitates exploring novel die steel and optimizing heat treatment and reinforcement technologies. This article summarizes and analyzes the development status of die steel and corresponding heat treatment and microstructure manipulation as well as strengthening methods and elaborates on an excellent nano-strengthening technology. Furthermore, this review will aid researchers in establishing a comprehensive understanding of the development status of die steel and the processes utilized for its strengthening. It will also assist them in developing die steel with improved comprehensive performance to meet the high demand for mold steel in the integrated die-casting technology of the new era.

6.
Nanomaterials (Basel) ; 9(8)2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405228

RESUMO

It is widely known that the special performances and extensive applications of the nanoscale materials are determined by their as-synthesized structures, especially their growth sizes and morphologies. Hereinto, titanium carbides, which show brilliant comprehensive properties, have attracted considerable attention from researchers. How to give full play to their potentials in the light-weight manufacture, microwave absorption, electromagnetic protection, energy conversion and catalyst areas has been widely studied. In this summarized article, the synthesis methods and mechanisms, corresponding growth morphologies of titanium carbides and their further applications were briefly reviewed and analyzed according to their different morphological dimensions, including one-dimensional nanostructures, two-dimensional nanosheets and three-dimensional nanoparticles. It is believed that through the investigation of the crystal structures, synthesis methods, growth mechanisms, and morphology characterizations of those titanium carbides, new lights could be shed on the regulation and control of the ceramic phase specific morphologies to meet with their excellent properties and applications. In addition, the corresponding development prospects and challenges of titanium carbides with various growth morphologies were also summarized.

7.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 34(6): 496-500, 2018 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-31032583

RESUMO

OBJECTIVE: To investigate the effects of Deoxygedunin on Aß deposition, learning memory, and oxidative stress induced by D-galactose combined with AlCl3 in model rats with Alzheimer's disease and its possible mechanism. METHODS: Male SD rats were randomly divided into three groups (n=12):control group, model group (AD) and intervention group (AD+Deo). Morris water maze test was used to detect learning/memory and cognitive function in rats.Glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and malondialdehyde (MDA) contents in homogenate of hippocampus were detected by enzyme-linked immunosorbent assay (ELISA).Tau protein expression in rat cerebral cortex was detected by immunohistochemistry.Western blot was used to detect the expressions of extracellular signal regulated kinase 1(ERK1), protein kinase B (PKB) and tropomyosin-related kinase B (TrkB) on TrkB signaling pathway. RESULTS: The results of water maze test showed that D-galactose combined with AlCl3 induced a significant increase in the escape latency compared with the control group (P<0.05).Deoxygedunin could reverse the increase of the escape latency of the model group (P<0.05).On the 7th day after removal of the platform, the model group showed an increase in escape latency compared with the control group and the intervention group (P<0.01), and the number of crossing platforms was declined (P<0.05); The results of immunohistochemistry and ELISA showed that the expressions of Aß and tau protein in the model group were increased significantly compared with those of the control group (P<0.01).The activities of SOD and GSH-Px were decreased significantly and the content of MDA was increased significantly.Compared with the model group, Deoxygedunin could reverse the increase of the expressions of Aß and tau protein (P<0.01), the decrease of SOD and GSH-Px activities (P<0.05) and the increase of the MDA content (P<0.05).Western blot results showed that Deoxygedunin treatment reversed the decreased phosphorylation levels of TrkB, AKT and ERK1 in hippocampus of the model group. CONCLUSIONS: Supplement of Deoxygedunin can significantly reverse Aß deposition, oxidative stress and cognitive deficits by activating the TrkB signal transduction pathway, which suggest that Deoxygedunin may serve as a promising therapeutic candidate for attenuating AD-like pathological dysfunction induced by D-galactose combined with AlCl3.


Assuntos
Doença de Alzheimer , Limoninas , Doença de Alzheimer/induzido quimicamente , Animais , Modelos Animais de Doenças , Galactose , Hipocampo , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Sprague-Dawley
8.
Nanomaterials (Basel) ; 8(8)2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103408

RESUMO

The in situ TiC/Al-Cu nanocomposites were fabricated in the Al-Ti-C reaction systems with various carbon sources by the combined method of combustion synthesis, hot pressing, and hot extrusion. The carbon sources used in this paper were the pure C black, hybrid carbon source (50 wt.% C black + 50 wt.% CNTs) and pure CNTs. The average sizes of nano-TiC particles range from 67 nm to 239 nm. The TiC/Al-Cu nanocomposites fabricated by the hybrid carbon source showed more homogenously distributed nano-TiC particles, higher tensile strength and hardness, and better abrasive wear resistance than those of the nanocomposites fabricated by pure C black and pure CNTs. As the nano-TiC particles content increased, the tensile strength, hardness, and the abrasive wear resistance of the nanocomposites increased. The 30 vol.% TiC/Al-Cu nanocomposite fabricated by the hybrid carbon source showed the highest yield strength (531 MPa), tensile strength (656 MPa), hardness (331.2 HV), and the best abrasive wear resistance.

9.
Materials (Basel) ; 11(6)2018 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-29861443

RESUMO

A high extrusion ratio of 166:1 was applied to commercial AZ61 alloy in one step with an extrusion speed of 2.1 m·min-1. The effects of DA (direct aging) treatment on the microstructure and tensile properties of extruded alloy were investigated. The extruded alloy exhibits fine DRXed grains and the average grain size is ~11 µm. After DA treatment at 170 °C, the tensile strength and 0.2% offset yield strength is enhanced from 314 to 336 MPa and from 169 to 191 MPa respectively, sacrificing elongation from 26.5% to 23.3%. The grain size and texture distribution of extruded AZ61 scarcely evolve during the post aging treatment. However, the enhanced strength in peak-aged alloy is mainly caused by the high-density elliptical Mg17Al12 precipitates distributing uniformly along the grain boundaries or within the grains, by precipitation and dispersion hardening. Furthermore, the nano-sized precipitates effectively inhibit grains from coarsening by triggering pinning effects along the grain boundaries at elevated temperature. As a result, the peak-aged alloy exhibits a better superplasticity of 306.5% compared with that of 231.8% of extruded sample. This work provides a practical one-step method for mass-producing Mg alloy sheets with excellent tensile strength and ductility compared with those fabricated by conventional extrusion methods.

10.
Materials (Basel) ; 11(8)2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30044419

RESUMO

Bimodal hybrid in-situ nano-/micro-size TiC/Al composites were prepared with combustion synthesis of Al-Ti-C system and hot press consolidation. Attempt was made to obtain in-situ bimodal-size TiC particle reinforced dense Al matrix composites by using different carbon sources in the reaction process of hot pressing forming. Microstructure showed that the obtained composites exhibited reasonable bimodal-sized TiC distribution in the matrix and low porosity. With the increasing of the carbon nano tube (CNT) content from 0 to 100 wt. %, the average size of the TiC particles decreases and the compressive strength of the composite increase; while the fracture strain increases first and then decreases. The compressive properties of the bimodal-sized TiC/Al composites, especially the bimodal-sized composite synthesized by Al-Ti-C with 50 wt. % CNTs as carbon source, were improved compared with the composites reinforced with single sized TiC. The strengthening mechanism of the in-situ bimodal-sized particle reinforced aluminum matrix composites was revealed.

11.
Materials (Basel) ; 10(3)2017 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-28772643

RESUMO

A multiphase nanostructured ZrCu-base bulk alloy which showed a unique microstructure consisting of sub-micrometer scale Zr2Cu solid solution, nano-sized twinned plate-like ZrCu martensite (ZrCu (M)), and retained ZrCu (B2) austenite was fabricated by copper mold casting. The observation of periodic morphology evolution on the fracture surface of the multiphase nanostructured ZrCu-base alloys has been reported, which suggested a fluctuant local stress intensity along the crack propagation. It is necessary to investigate the compressive deformation behavior and the fracture mechanism of the multiphase alloy and the relation to the unique microstructures. The results obtained in this study provide a better understanding of the deformation and fracture mechanisms of multiphase hybrid nanostructured ZrCu-based alloys and give guidance on how to improve the ductility/toughness of bulk ZrCu-based alloys.

12.
Materials (Basel) ; 10(8)2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28800084

RESUMO

Nano-sized ceramic particle reinforced aluminum composites exhibit excellent room-temperature mechanical properties. However, there is limited research on the dry sliding wear behavior of those composites at elevated temperatures, which should be one of the major concerns on elevated temperature applications. Here the Al-Cu composites reinforced with nano-sized TiCp were fabricated. The dry sliding wear behaviors of the nano-sized TiCp/Al-Cu composites at various temperatures (140-220 °C) and loads (10-40 N) with different TiCp contents were studied, and the results showed that the nanocomposites exhibited superior wear resistance. For instance, the relative wear resistance of the 0.5 wt.% nano-sized TiCp/Al-Cu composite was 83.5% higher than that of the Al-Cu matrix alloy at 180 °C under 20 N, and was also 16.5% higher than that of the 5 wt.% micro-sized TiCp/Al-Cu composite, attributed to the pronounced Orowan strengthening effect of nanoparticles. The wear rates of the nanocomposites were always lower than those of the Al-Cu matrix alloy under the same test condition, which increased with the increase in temperature and load and with the decrease in TiCp content.

13.
Materials (Basel) ; 9(3)2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28773302

RESUMO

Damage to carbon nanotubes (CNTs) during the fabrication process of CNT reinforced composites has great influence on their mechanical properties. In this study, the 2014 Al with powder sizes of 20, 9 and 5 µm was selected to study the effect of initial particle size on the damage to carbon nanotubes (CNTs) during ball milling. The result shows that for CNTs in the ball milled CNT/Al (with powder size of 20 and 9 µm) mixtures, the intensity ratio of the D band and the G band (ID/IG) first increased and then reached a plateau, mainly because most of the CNTs are embedded, to a certain extent, in the aluminum powder after milling, which could protect the CNTs from damage during further milling. While for CNTs in the ball milled CNT/Al (with powder size of 5 µm) mixture, the ID/IG ratio continues to climb from 1.31 to 2.33 with time, indicating continuous damage to the CNTs occurs during the milling. Differential scanning calorimetry (DSC) analysis demonstrates that the chemical instability increased with an increase in the damage level of CNTs, resulting in the formation of aluminum carbide (Al4C3) at a lower temperature before the melting of aluminum, which is detrimental to their mechanical properties.

14.
Materials (Basel) ; 9(4)2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28773367

RESUMO

It is found that Li2Sb compound can act as the nucleus of primary Mg2Si during solidification, by which the particle size of primary Mg2Si decreased from ~300 to ~15-25 µm. Owing to the synergistic effect of the Li2Sb nucleus and adsorption-poisoning of Li atoms, the effect of complex modification of Li-Sb on primary Mg2Si was better than that of single modification of Li or Sb. When Li-Sb content increased from 0 to 0.2 and further to 0.5 wt.%, coarse dendrite changed to defective truncated octahedron and finally to perfect truncated octahedral shape. With the addition of Li and Sb, ultimate compression strength (UCS) of Al-20Mg2Si alloys increased from ~283 to ~341 MPa and the yield strength (YS) at 0.2% offset increased from ~112 to ~179 MPa while almost no change was seen in the uniform elongation. Our study offers a simple method to control the morphology and size of primary Mg2Si, which will inspire developing new Al-Mg-Si alloys with improved mechanical properties.

15.
Sci Rep ; 6: 22990, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26965058

RESUMO

Hierarchical TiO2 micron spheres assembled by nano-plates were prepared through a facile hydrothermal route. Chemical tuning of the TiO2 through hydrogen reduction (H-TiO2) is shown to increase oxygen-vacancy density and thereby modifies the electronic properties. H-TiO2 spheres with a polar surface serve as the surface-bound intermediates for strong polysulfides binding. Under the restricting and recapturing effect, the sulfur cathode could deliver a high reversible capacity of 928.1 mA h g(-1) after 50 charge-discharge cycles at a current density of 200 mA g(-1). The H-TiO2 additive developed here is practical for restricting and recapturing the polysulfide from the electrolyte.

16.
Materials (Basel) ; 9(6)2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28773557

RESUMO

Twin-roll casting AZ31 Mg alloy sheets have been fabricated by normal unidirectional-rolling, head-to-tail rolling, and clock-rolling, respectively. It has been demonstrated that head-to-tail rolling is the most effective to refine the microstructure and weaken the basal texture among the three rolling routes. Excellent integrated tensile properties can be obtained by the head-to-tail rolling. The yield strength, ultimate tensile strength, and plastic elongation are 196 MPa, 301 MPa, and 28.9%, respectively. The strength can benefit from the fine grains (average value of 4.0 µm) of the AZ31 alloy processed by the head-to-tail rolling route, while the excellent plastic elongation is achieved owing to the weakened basal texture besides the fine grains. Results obtained here can be used as a basis for further study of some simple rolling methods, which is critical to the development of Mg alloys with high strength and plasticity.

17.
Materials (Basel) ; 9(12)2016 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-28774083

RESUMO

Nano-SiC particulates (n-SiCp) reinforced Mg-8Al-1Sn (AT81) composites with different pre-oxidation parameters were fabricated by powder metallurgy (P/M) process combined with hot extrusion. The effects of pre-oxidization treatment of n-SiCp on the microstructure and tensile properties of 0.5 vol % n-SiCp/AT81 composites were investigated accordingly. The distribution of n-SiCp with different pre-oxidation parameters was homogeneous in the composites. Moreover, it was found that a thin MgAl2O4 layer formed at the interface when the n-SiCp were pre-oxidized at 1073 K for 2 h, while the MgAl2O4 layer became much thicker with pre-oxidization temperature increasing to 1273 K for 2 h. After an appropriate pre-oxidization treatment of n-SiCp at 1073 K for 2 h, the as-extruded 0.5 vol % n-SiCp/AT81 composites exhibited an enhanced strength. It was found that the yield strength (YS) and ultimate tensile strength (UTS) increased from 168 MPa and 311 MPa to 255 MPa and 393 MPa compared with the as-extruded AT81 alloy, reflecting 51.8% and 26.4% increments, respectively. The improvement of mechanical properties should be mainly attributed to the grain refinement and homogeneous distribution of n-SiCp in the composites. Moreover, a well-bonded interface and the formation of an appropriate amount of interfacial product (MgAl2O4) benefited the material's mechanical properties.

18.
Sci Rep ; 5: 17100, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26603776

RESUMO

Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30-60 µm, exhibiting a typical basal texture, fine grains of 1-5 µm and ultrafine (sub) grains of 200-500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa