Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunology ; 170(4): 553-566, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37688495

RESUMO

Rheumatoid arthritis is a chronic and systemic inflammatory disease that affects approximately 1% of the world's population and is characterised by joint inflammation, the destruction of articular cartilage and bone, and many potentially life-threatening extraarticular manifestations. B lymphocytes play a central role in the pathology of rheumatoid arthritis as the precursors of autoantibody secreting plasma cells, as highly potent antigen-presenting cells, and as a source of various inflammatory cytokines, however, the effects of rheumatoid arthritis on B lymphocyte development remain poorly understood. Here, we analyse B lymphocyte development in murine models of rheumatoid arthritis, quantifying all the subsets of B cell precursors in the bone marrow and splenic B cells using flow cytometry. We demonstrate a severe reduction in pre-B cells and immature B cells in the bone marrow of mice with active disease, despite no major effects on the mature naïve B cell numbers. The loss of B cell precursors in the bone marrow of the affected mice was associated with a highly significant reduction in the proportion of Ki67+ cells, indicating impaired cell proliferation, while the viability of the B cell precursors was not significantly affected. We also observed some mobilisation of the B cell precursor cells into the mouse spleen, demonstrated with flow cytometry and pre-B colony forming units assays. In summary, the current work demonstrates a severe dysregulation in B lymphocyte development in murine rheumatoid arthritis, with possible implications for B cell repertoire formation, tolerance induction, and disease mechanisms.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Modelos Animais de Doenças , Linfócitos B , Tolerância Imunológica
2.
Nat Commun ; 11(1): 3702, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32710081

RESUMO

Spinal cord injury (SCI) causes immune dysfunction, increasing the risk of infectious morbidity and mortality. Since bone marrow hematopoiesis is essential for proper immune function, we hypothesize that SCI disrupts bone marrow hematopoiesis. Indeed, SCI causes excessive proliferation of bone marrow hematopoietic stem and progenitor cells (HSPC), but these cells cannot leave the bone marrow, even after challenging the host with a potent inflammatory stimulus. Sequestration of HSPCs in bone marrow after SCI is linked to aberrant chemotactic signaling that can be reversed by post-injury injections of Plerixafor (AMD3100), a small molecule inhibitor of CXCR4. Even though Plerixafor liberates HSPCs and mature immune cells from bone marrow, competitive repopulation assays show that the intrinsic long-term functional capacity of HSPCs is still impaired in SCI mice. Together, our data suggest that SCI causes an acquired bone marrow failure syndrome that may contribute to chronic immune dysfunction.


Assuntos
Transtornos da Insuficiência da Medula Óssea/etiologia , Medula Óssea/metabolismo , Traumatismos da Medula Espinal/complicações , Animais , Benzilaminas , Medula Óssea/patologia , Células da Medula Óssea , Transtornos da Insuficiência da Medula Óssea/patologia , Proliferação de Células , Quimiocina CXCL12 , Ciclamos , Modelos Animais de Doenças , Feminino , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Compostos Heterocíclicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Receptores CXCR4/antagonistas & inibidores , Transdução de Sinais , Traumatismos da Medula Espinal/imunologia
3.
Sci Rep ; 9(1): 19105, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836828

RESUMO

Humanized mice can be used to better understand how the human immune system responds to central nervous system (CNS) injury and inflammation. The optimal parameters for using humanized mice in preclinical CNS injury models need to be established for appropriate use and interpretation. Here, we show that the developmental age of the human immune system significantly affects anatomical and functional outcome measures in a preclinical model of traumatic spinal cord injury (SCI). Specifically, it takes approximately 3-4 months for a stable and functionally competent human immune system to develop in neonatal immune compromised mice after they are engrafted with human umbilical cord blood stem cells. Humanized mice receiving a SCI before or after stable engraftment exhibit significantly different neuroinflammatory profiles. Importantly, the development of a mature human immune system was associated with worse lesion pathology and neurological recovery after SCI. In these mice, human T cells infiltrate the spinal cord lesion and directly contact human macrophages. Together, data in this report establish an optimal experimental framework for using humanized mice to help translate promising preclinical therapies for CNS injury.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Feminino , Sangue Fetal/citologia , Humanos , Sistema Imunitário , Inflamação , Lipopolissacarídeos , Linfócitos/citologia , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Medula Espinal/patologia , Baço/citologia , Linfócitos T Citotóxicos/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa