Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 18(1): 58, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28068921

RESUMO

BACKGROUND: Cultivated peanut (Arachis hypogaea L.), an important source of edible oil and protein, is widely grown in tropical and subtropical areas of the world. Genetic improvement of yield-related traits is essential for improving yield potential of new peanut varieties. Genomics-assisted breeding (GAB) can accelerate the process of genetic improvement but requires linked markers for the traits of interest. In this context, we developed a recombinant inbred line (RIL) mapping population (Yuanza 9102 × Xuzhou 68-4) with 195 individuals and used to map quantitative trait loci (QTLs) associated with three important pod features, namely pod length, pod width and hundred-pod weight. RESULTS: QTL analysis using the phenotyping data generated across four environments in two locations and genotyping data on 743 mapped loci identified 15 QTLs for pod length, 11 QTLs for pod width and 16 QTLs for hundred-pod weight. The phenotypic variation explained (PVE) ranged from 3.68 to 27.84%. Thirteen QTLs were consistently detected in at least two environments and three QTLs (qPLA05.7, qPLA09.3 and qHPWA05.6) were detected in all four environments indicating their consistent and stable expression. Three major QTLs, detected in at least three environments, were found to be co-localized to a 3.7 cM interval on chromosome A05, and they were qPLA05.7 for pod length (16.89-27.84% PVE), qPWA05.5 for pod width (13.73-14.12% PVE), and qHPWA05.6 for hundred-pod weight (13.75-26.82% PVE). This 3.7 cM linkage interval corresponds to ~2.47 Mb genomic region of the pseudomolecule A05 of A. duranensis, including 114 annotated genes related to catalytic activity and metabolic process. CONCLUSIONS: This study identified three major consistent and stable QTLs for pod size and weight which were co-localized in a 3.7 cM interval on chromosome A05. These QTL regions not only offer further investigation for gene discovery and development of functional markers but also provide opportunity for deployment of these QTLs in GAB for improving yield in peanut.


Assuntos
Arachis/crescimento & desenvolvimento , Arachis/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Locos de Características Quantitativas/genética , Marcadores Genéticos/genética , Fenótipo , Polimorfismo Genético
2.
J Chem Ecol ; 43(3): 236-242, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28251439

RESUMO

Holotrichia parallela (Coleoptera: Scarabaeoidea) is a notorious pest of many crops. To improve the effectiveness of its female-produced sex pheromone (L-isoleucine methyl ester:(R)-(-)-linalool = 6:1), 14 plant volatiles, including dodecanoic acid, dodecanal, farnesol, α-farnesene, (Z)-3-hexen-1-ol, (E)-2-hexen-1-ol, (Z)-3-hexenyl acetate, (E)-2-hexenyl acetate, (R)-(+)-limonene, α-phellandrene, α-pinene, ocimene, methyl benzoate, and benzaldehyde, were individually evaluated using electroantennography and olfactometer assays. (E)-2-Hexenyl acetate and (Z)-3-hexenyl acetate were found to elicit the strongest responses in both males and females. Further testing of these two compounds in mixtures with the sex pheromone indicated that (E)-2-hexenyl acetate had a stronger synergistic effect than (Z)-3-hexenyl acetate. Field evaluations showed that mixtures of (E)-2-hexenyl acetate and the sex pheromone resulted in significantly higher catches than the sex pheromone alone. Using a 5:1 mixture of the sex pheromone and (E)-2-hexenyl acetate, the maximum number of females per trap per day was 14, showing a synergistic effect of a factor of four. For males, a 3:1 mixture of the sex pheromone and (E)-2-hexenyl acetate yielded a maximum number of 310 individuals per trap per day, equivalent to a synergistic effect of 175%. These results may provide the basis for the development of efficient pest management systems against H. parallela using plant volatiles and insect sex pheromones.


Assuntos
Besouros/química , Besouros/efeitos dos fármacos , Plantas/química , Atrativos Sexuais/farmacologia , Compostos Orgânicos Voláteis/farmacologia , Animais , Sinergismo Farmacológico , Feminino , Masculino , Controle Biológico de Vetores , Olfato/efeitos dos fármacos , Compostos Orgânicos Voláteis/química
3.
Theor Appl Genet ; 128(6): 1103-15, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25805315

RESUMO

KEY MESSAGE: SSR-based QTL mapping provides useful information for map-based cloning of major QTLs and can be used to improve the agronomic and quality traits in cultivated peanut by marker-assisted selection. Cultivated peanut (Arachis hypogaea L.) is an allotetraploid species (AABB, 2n = 4× = 40), valued for its edible oil and digestible protein. Linkage mapping has been successfully conducted for most crops, and it has been applied to detect the quantitative trait loci (QTLs) of biotic and abiotic traits in peanut. However, the genetic basis of agronomic and quality-related traits remains unclear. In this study, high levels of phenotypic variation, broad-sense heritability and significant correlations were observed for agronomic and quality-related traits in an F 2:3 population. A genetic linkage map was constructed for cultivated peanut containing 470 simple sequence repeat (SSR) loci, with a total length of 1877.3 cM and average distance of 4.0 cM between flanking markers. For 10 agronomic traits, 24 QTLs were identified and each QTL explained 1.69-18.70 % of the phenotypic variance. For 8 quality-related traits, 12 QTLs were identified that explained 1.72-20.20 % of the phenotypic variance. Several QTLs for multiple traits were overlapped, reflecting the phenotypic correlation between these traits. The majority of QTLs exhibited obvious dominance or over-dominance effects on agronomic and quality traits, highlighting the importance of heterosis for breeding. A comparative analysis revealed genomic duplication and arrangement of peanut genome, which aids the assembly of scaffolds in genomic sequencing of Arachis hypogaea. Our QTL analysis results enabled us to clearly understand the genetic base of agronomic and quality traits in cultivated peanut, further accelerating the progress of map-based cloning of major QTLs and marker-assisted selection in future breeding.


Assuntos
Arachis/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas , Característica Quantitativa Herdável , Cruzamento , DNA de Plantas/genética , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Repetições de Microssatélites , Fenótipo
4.
Toxins (Basel) ; 14(7)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35878163

RESUMO

In order to study the relationship between the distribution and aflatoxin production capacity of Aspergillus species and soil types, 35 soil samples were collected from the main peanut planting areas in Xiangyang, which has 19.7 thousand square kilometers and is located in a special area with different soil types. The soil types of peanut planting areas in Xiangyang are mainly sandy loam and clay loam, and most of the soil is acidic, providing unique nature conditions for this study. The results showed that the Aspergillus sp. population in clay loam (9050 cfu/g) was significantly larger than that in sandy loam (3080 cfu/g). The percentage of atoxigenic Aspergillus strains isolated from sandy loam samples was higher than that from clay loam samples, reaching 58.5%. Meanwhile the proportion of high toxin-producing strains from clay loam (39.7%) was much higher than that from sandy loam (7.3%). Under suitable culture conditions, the average aflatoxin production capacity of Aspergillus isolates from clay loam samples (236.97 µg/L) was higher than that of strains from sandy loam samples (80.01 µg/L). The results inferred that under the same regional climate conditions, the density and aflatoxin production capacity of Aspergillus sp. in clay loam soil were significantly higher than that in sandy loam soil. Therefore, peanuts from these planting areas are at a relatively higher risk of contamination by Aspergillus sp. and aflatoxins.


Assuntos
Aflatoxinas , Solo , Arachis , Aspergillus , Argila
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa