RESUMO
We systematically study the influence of interface configuration and strain on the electronic and transport properties of lateral MoS2/graphene heterostructures by first-principles calculations and quantum transport simulations. We first identify the favorable heterostructure configurations with C-S and/or C-Mo bonds at the interfaces. Strain can be applied to graphene or MoS2 and would not change the relative stabilities of different heterostructures. Band alignment calculations show that all the lateral heterostructures have n-type Schottky contacts. The current-voltage characteristics of the lateral MoS2/graphene heterostructure diodes exhibit good rectification performance. Too strong and too weak interface interactions do not benefit electronic transport. The MoS2/graphene heterostructures with moderate C-S bonds at the interface have larger currents through the junctions than those with C-Mo bonds at the interface. The maximal rectification ratio of the lateral diode with strain applied to MoS2 can reach up to 105. With strain applied to graphene, the currents through the heterostructures can increase by 1-2 orders of magnitude due to the reduced Schottky barrier heights at the interface, but the rectification ratio is reduced with a maximal value of 104. Our calculations can serve as a theoretical guide to design rectifier and diode devices based on two-dimensional lateral heterostructures.
RESUMO
Two-dimensional (2D) MoS2, which has great potential for optoelectronic and other applications, is thermodynamically stable and hence easily synthesized in its semiconducting 2H phase. In contrast, growth of its metastable 1T and 1T' phases is hampered by their higher formation energy. Here we use theoretical calculations to design a potassium (K)-assisted chemical vapour deposition method for the phase-selective growth of 1T' MoS2 monolayers and 1T'/2H heterophase bilayers. This is realized by tuning the concentration of K in the growth products to invert the stability of the 1T' and 2H phases. The synthesis of 1T' MoS2 monolayers with high phase purity allows us to characterize their intrinsic optical and electrical properties, revealing a characteristic in-plane anisotropy. This phase-controlled bottom-up synthesis offers a simple and efficient way of manipulating the relevant device structures, and provides a general approach for producing other metastable-phase 2D materials with unique properties.
RESUMO
ß-Ga2O3 has drawn recent attention as a state-of-the-art electronic material due to its stability, optical transparency and appealing performance in power devices. However, it has also found a wider range of opto-electronic applications including photocatalysis, especially in its porous form. For such applications, a lower band gap must be obtained and an electron-hole spatial separation would be beneficial. Like many other metal oxides (e.g. Al2O3), Ga2O3 can also form various types of porous structure. In the present study, we investigate how its optical and electronic properties can be changed in a particular porous structure with stoichiometrically balanced and extended vacancy channels. We apply a set of first principles computational methods to investigate the formation and the structural, dynamic, and opto-electronic properties. We find that such an extended vacancy channel is mechanically stable and has relatively low formation energy. We also find that this results in a spatial separation of the electron and hole, forming a long-lived charge transfer state that has desirable characteristics for a photocatalyst. In addition, the electronic band gap reduces to the vis-region unlike the transparency in the pure ß-Ga2O3 crystal. Thus, our systematic study is promising for the application of such a porous structure of ß-Ga2O3 as a versatile electronic material.
RESUMO
The effects of the staggered double vacancies, hydrogen (H), 3d transition metals, for example cobalt, and semiconductor covalent atoms, for example, germanium, nitrogen, phosphorus (P) and silicon adsorption on the transport properties of monolayer phosphorene were studied using density functional theory and non-equilibrium Green's function formalism. It was observed that the performance of the phosphorene tunnel field effect transistors (TFETs) with an 8.8 nm scaling channel length could be improved most effectively, if the adatoms or vacancies were introduced at the source channel interface. For H and P doped devices, the upper limit of on-state currents of phosphorene TFETs were able to be quickly increased to 2465 µA µm-1 and 1652 µA µm-1, respectively, which not only outperformed the pristine sample, but also met the requirements for high performance logic applications for the next decade in the International Technology Roadmap for Semiconductors (ITRS). It was proved that the defect-induced band gap states make the effective tunneling path between the conduction band (CB) and valence band (VB) much shorter, so that the carriers can be injected easily from the left electrode, then transfer to the channel. In this regard, the tunneling properties of phosphorene TFETs can be manipulated using surface defects. In addition, the effects of spin polarization on the transport properties of doped phosphorene TFETs were also rigorously considered, H and P doped TFETs could achieve a high ON current of 1795 µA µm-1 and 1368 µA µm-1, respectively, which is closer to realistic nanodevices.
RESUMO
Polarized detection has been brought into operation for optics applications in the visible band. Meanwhile, an advanced requirement in short-wave near-infrared (SW-NIR) (700-1100 nm) is proposed. Typical IV-VI chalcogenides-2D GeSe with anisotropic layered orthorhombic structure and narrow 1.1-1.2 eV band gap-potentially meets the demand. Here we report the unusual angle dependences of Raman spectra on high-quality GeSe crystals. The polarization-resolved absorption spectra (400-950 nm) and polarization-sensitive photodetectors (532, 638, and 808 nm) both exhibited well-reproducible cycles, distinct anisotropic features, and typical absorption ratios αy/αx ≈ 1.09 at 532 nm, 1.26 at 638 nm, and 3.02 at 808 nm (the dichroic ratio Ipy/Ipx ≈ 1.09 at 532 nm, 1.44 at 638 nm, 2.16 at 808 nm). Obviously, the polarized measurement for GeSe showed superior anisotropic response at around 808 nm within the SW-NIR band. Besides, the two testing methods have demonstrated the superior reliability for each other. For the layer dependence of linear dichroism, the GeSe samples with different thicknesses measured under both 638 and 808 nm lasers identify that the best results can be achieved at a moderate thickness about 8-16 nm. Overall, few-layer GeSe has capacity with the integrated SW-NIR optical applications for polarization detection.
RESUMO
The device performances of both n-type and p-type tunnel field-effect transistors (TFETs) made of single-layer InX (X = N, P, As, Sb) are theoretically evaluated through density functional theory (DFT) and ab initio simulations in this paper. It is found that a promising steep subthreshold swing (SS) of [less-than-or-eq] 60 mV dec-1 can be obtained with gate length LG = 15.2 nm for all two-dimensional (2D) InX TFETs. In particular, an outstanding on-current of â¼1058 µA µm-1 (or 880 µA µm-1) is estimated in a 2D p-type (or n-type) InSb device, which could barely satisfy the ITRS requirements for future high-performance (HP) applications. In addition, the 2D InAs p-type (or n-type) TFET containing a 15.2 nm gate length has great potential to be applied to the low-power (LP) devices with an ON-OFF ratio of ION/IOFF = 1.8 × 107 (or ION/IOFF = 1.9 × 107). However, the density-of-state bottleneck effect strongly influences the behavior of 2D InP and InN devices. Our results provide guidance for experimental synthesis and future designs of a single-layer material device with a steep inverse subthreshold slope, low OFF-, and high ON-current.
RESUMO
The optimization of the atomic and molecular clusters with a large number of atoms is a very challenging topic. This article proposes a parallel differential evolution (DE) optimization scheme for large-scale clusters. It combines a modified DE algorithm with improved genetic operators and a parallel strategy with a migration operator to address the problems of numerous local optima and large computational demanding. Results of Lennard-Jones (LJ) clusters and Gupta-potential Co clusters show the performance of the algorithm surpasses those in previous researches in terms of successful rate, convergent speed, and global searching ability. The overall performance for large or challenging LJ clusters is enhanced significantly. The average number of local minimizations per hit of the global minima for Co clusters is only about 3-4% of that in previous methods. Some global optima for Co are also updated. We then apply the algorithm to optimize the Pt clusters with Gupta potential from the size 3 to 130 and analyze their electronic properties by density functional theory calculation. The clusters with 13, 38, 54, 75, 108, and 125 atoms are extremely stable and can be taken as the magic numbers for Pt systems. It is interesting that the more stable structures, especially magic-number ones, tend to have a larger energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. It is also found that the clusters are gradually close to the metal bulk from the size N > 80 and Pt38 is expected to be more active than Pt75 in catalytic reaction.
RESUMO
A new crossover operator is proposed to evolve the structures of the atomic clusters. It uses a sphere rather than a plane to cut and splice the parent structures. The child cluster is constructed by the atoms of one parent which lie inside the sphere, and the atoms of the other parent which lie outside the sphere. It can reliably produce reasonable offspring and preserve the good schemata in parent structures, avoiding the drawbacks of the classical plane-cut-splice crossover in the global searching ability and the local optimization speed. Results of Lennard-Jones clusters (30 ≤ N ≤ 500) show that at the same settings the genetic algorithm with the sphere-cut-splice crossover exhibits better performance than the one with the plane-cut-splice crossover. The average number of local minimizations needed to find the global minima and the average number of energy evaluation of each local minimization in the sphere scheme is 0.8075 and 0.8386 of that in the plane scheme, respectively. The mean speed-up ratio for the entire testing clusters reaches 1.8207. Moreover, the sphere scheme is particularly suitable for large clusters and the mean speed-up ratio reaches 2.3520 for the clusters with 110 ≤ N ≤ 500. The comparison with other successful methods in previous studies also demonstrates its good performance. Finally, a further analysis is presented on the statistical features of the cutting sphere and a modified strategy that reduces the probability of using tiny and large spheres exhibits better global search.
RESUMO
Objective: To explore the clinical characteristics and prognosis of clustered cases of psittacosis pneumonia. Method: We retrospectively analyzed the clinical data of a cluster outbreak of psittacosis pneumonia. The analysis included epidemiological data, clinical symptoms, laboratory results, and prognosis. The diagnosis was made using mNGS and nested PCR technology. Result: Of the four cases, two had direct contact with diseased poultry while the other two did not. All cases presented with more than 39.5 °C fever and chills. Additionally, significant increases in C-reactive protein, ferritin, creatine kinase, and lactate dehydrogenase were observed in all cases, while absolute lymphocyte count decreased. Case 2 also had increased calcitonin levels. Acute respiratory failure occurred during the treatment of case 1 and case 2, leading to tracheal intubation and ventilator-assisted ventilation. Unfortunately, case 2 passed away due to sepsis and multiple organ dysfunction, while the other cases had a positive prognosis. Conclusion: mNGS facilitated the early diagnosis of psittacosis pneumonia. It is important to note that there is still a substantial risk of human-to-human transmission in psittacosis pneumonia. Absolute lymphocyte count and calcitonin levels can predict the severity and prognosis of the disease.
Assuntos
Chlamydophila psittaci , Pneumonia , Psitacose , Humanos , Psitacose/diagnóstico , Psitacose/epidemiologia , Chlamydophila psittaci/genética , Calcitonina , Estudos Retrospectivos , Surtos de DoençasRESUMO
One critical problem inhibiting the application of MoS2 field-effect transistors (FETs) is the hysteresis in their transfer characteristics, which is typically associated with charge trapping (CT) and charge detrapping (CDT) induced by atomic defects at the MoS2-dielectric interface. Here, we propose a novel atomistic framework to simulate electronic processes across the MoS2-SiO2 interface, demonstrating the distinct CT/CDT behavior of different types of atomic defects and further revealing the defect type(s) that most likely cause hysteresis. An anharmonic approximation of the classical Marcus theory is developed and combined with state-of-the-art density functional theory to calculate the gate bias-dependent CT/CDT rates. All the key electronic quantities are calculated with Heyd-Scuseria-Ernzerhof hybrid functionals. The results show that single Si-dangling bond defects are active electron trapping centers. Single O-dangling bond defects are active hole trapping centers, which are more likely to be responsible for the hysteresis phenomenon due to their significant CT rate and apparent threshold voltage shift. In contrast, double Si-dangling bond defects are not active trap centers. These findings provide fundamental physical insights for understanding the hysteresis behavior of MoS2 FETs and provide vital support for understanding and solving the reliability of nanoscale devices.
RESUMO
In atomically-thin two-dimensional (2D) semiconductors, the nonuniformity in current flow due to its edge states may alter and even dictate the charge transport properties of the entire device. However, the influence of the edge states on electrical transport in 2D materials has not been sufficiently explored to date. Here, we systematically quantify the edge state contribution to electrical transport in monolayer MoS2/WSe2 field-effect transistors, revealing that the charge transport at low temperature is dominated by the edge conduction with the nonlinear behavior. The metallic edge states are revealed by scanning probe microscopy, scanning Kelvin probe force microscopy and first-principle calculations. Further analyses demonstrate that the edge-state dominated nonlinear transport shows a universal power-law scaling relationship with both temperature and bias voltage, which can be well explained by the 1D Luttinger liquid theory. These findings demonstrate the Luttinger liquid behavior in 2D materials and offer important insights into designing 2D electronics.
RESUMO
Monolayer Schottky barrier (SB) field-effect transistors based on the in-plane heterojunction of 1T/1T'-phase (metallic) and 2H-phase (semiconducting) transition-metal dichalcogenides (TMDs) have been proposed following the recent experimental synthesis of such devices. By using density functional theory and ab initio simulations, intrinsic device performance, sub-10 nm scaling, and performance boosting of MoSe2, MoTe2, WSe2, and WTe2, SB field-effect transistors are systematically investigated. We find that the Schottky barrier heights (SBHs) of these in-plane 1T(1T')/2H contacts are proportional to their band gaps: the bigger band gap corresponds to bigger SBH. For four TMDs, the SBH of 1T/2H contact is always smaller than that of 1T'/2H contact. The WTe2 SB field-effect transistor can provide the best performance and satisfy the requirement of the high-performance transistor outlined by the International Technology Roadmap for Semiconductors down to a 6 nm gate length. In addition, the replacement of suitable 1T-TMD on the source/drain regions can modulate conduction band SB, leading to the 8.8 nm WSe2 SB field-effect transistor also satisfying the requirement. Moreover, the introduction of the underlap can increase the effective channel length and reduce the coupling between the source/drain and the channel, leading to the 5.1 nm WTe2 SB field-effect transistor also satisfying the International Technology Roadmap for Semiconductors high-performance requirement. The underlying physical mechanisms are discussed, and it is concluded that the in-plane SB engineering is the key point to optimize such two-dimensional devices.
RESUMO
Inspired by the novel mechanism of reducing thermal conductivity by local phonon resonance instead of by inducing structural defects, we investigate the effect of side branching on the thermoelectric properties of [Formula: see text] nanoribbons, and prove that side branching is a highly efficient mechanism for enhancing the thermoelectricity of different kinds of nanoribbons. For both armchair and zigzag [Formula: see text] nanoribbons, the side branches result in not only significant blocking of phonon transport but also notable increase of the Seebeck coefficient. Consequently, the thermoelectric figure of merit of the armchair [Formula: see text] nanoribbon is boosted from 0.72 to as high as 1.93, and the originally non-thermoelectric metallic zigzag [Formula: see text] nanoribbon is turned into a thermoelectric material due to the appearance of the band gap induced by the side branches. These results mean that the mechanism of branching is not only very efficient, but also takes effect regardless of the original properties of the nanoribbons, and thus will hold great promise for its application in the thermoelectric field.
RESUMO
Magnetic tunneling junctions (MTJs) have atomic thickness due to the use of two-dimensional (2D) materials. Combining density functional theory with non-equilibrium Green's function formalism, we systematically investigate the structural and magnetic properties of CrX3/h-BN/CrX3 (X = Br, I) MTJs, as well as their spin-dependent transport characteristics. Through calculation of the transmission spectrum, the large tunneling magnetoresistance (TMR) effect was observed in these MTJs. Moreover, their conductance based on two-dimensional materials was greatly improved over that of traditional MTJs. The transmission mechanism was analyzed using the symmetry of the orbit and the eigenstates of the transmitted electrons. We also discuss the problem of Schottky contact between different metal electrodes and devices. Our results suggest that MTJs based on two-dimensional ferromagnets are feasible.
RESUMO
Atomically thin two-dimensional semiconducting materials integrated into van der Waals heterostructures have enabled architectures that hold great promise for next generation nanoelectronics. However, challenges still remain to enable their applications as compliant materials for integration in logic devices. Here, we devise a reverted stacking technique to intercalate a wrinkle-free boron nitride tunnel layer between MoS2 channel and source drain electrodes. Vertical tunnelling of electrons therefore makes it possible to suppress the Schottky barriers and Fermi level pinning, leading to homogeneous gate-control of the channel chemical potential across the bandgap edges. The observed features of ambipolar pn to np diode, which can be reversibly gate tuned, paves the way for future logic applications and high performance switches based on atomically thin semiconducting channel.Van der Waals heterostructures of atomically thin materials hold promise for nanoelectronics. Here, the authors demonstrate a reverted stacking fabrication method for heterostructures and devise a vertical tunnel-contacted MoS2 transistor, enabling gate tunable rectification and reversible pn to np diode behaviour.
RESUMO
Orbital-free density functional theory (OFDFT) is a quantum-mechanics-based method that utilizes electron density as its sole variable. The main computational cost in OFDFT is the ubiquitous use of the fast Fourier transform (FFT), which is mainly adopted to evaluate the kinetic energy density functional (KEDF) and electron-electron Coulomb interaction terms. We design and implement a small-box FFT (SBFFT) algorithm to overcome the parallelization limitations of conventional FFT algorithms. We also propose real-space truncation of the nonlocal Wang-Teter KEDF kernel. The scalability of the SBFFT is demonstrated by efficiently simulating one full optimization step (electron density, energies, forces, and stresses) of 1,024,000 lithium (Li) atoms on up to 65,536 cores. We perform other tests using Li as a test material, including calculations of physical properties of different phases of bulk Li, geometry optimizations of nanocrystalline Li, and molecular dynamics simulations of liquid Li. All of the tests yield excellent agreement with the original OFDFT results, suggesting that the OFDFT-SBFFT algorithm opens the door to efficient first-principles simulations of materials containing millions of atoms.