Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 652(Pt B): 1620-1630, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666194

RESUMO

Two-dimensional montmorillonite nanosheet (MMTNS) is desirable building block for fabricating multifunctional materials as due to its extraordinary properties. In practical applications, however, the concentration of MMTNS prepared by exfoliation is normally too low to be used for material assembling. The general thermal-concentration method is effective, however, it can be time-consuming and require a lot of energy. In this case, the remarkable dispersion stability of MMTNS is worth noting. Herein, the extraordinary dispersion stability of MMTNS derived from electrostatic and hydration repulsion was firstly revealed by molecular dynamics (MD) simulation, which caused the poor dewatering of MMTNS. Further, based on the surface and structural chemistry of MMTNS, a series of strategies, involving charge and cross-linked structure regulation on the edge surface, as well as electrical double-layer modulation and calcification modification based on the electrolytes, were proposed to inhibit the dispersion and enhance the aggregation of MMTNS. Intriguingly, a novel chemical, Tetraethylenepentamine (TEPA) was applied in the dewatering of MMTNS. The TEPA not only act as a cross-linker to bond with MMTNS into an easy-to-dewatering 3D network structure, but also act as a switch for effortless viscosity tuning. Meanwhile, the dual function of electrolytes for electrical double layer compression and calcification modification of MMTNS was investigated by DLVO theory and structural analyses. This work offers explicit directions for improving the dewatering performance of MMTNS to meet the requirements of practical implementation.

2.
RSC Adv ; 9(63): 36907-36914, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35539040

RESUMO

Black TiO2 has received tremendous attention because of its lattice disorder-induced reduction in the TiO2 bandgap, which yields excellent light absorption and photocatalytic ability. In this report, a highly efficient visible-light-driven black TiO2 photocatalyst was synthesized with a mesoporous hollow shell structure. It provided a higher specific surface area, more reaction sites and enhanced visible light absorption capability, which significantly promoted the photocatalytic reaction. Subsequently, the mesoporous hollow black TiO2 with different lattice disorder-engineering degrees were designed. The structure disorder in the black TiO2 obviously increased with reduction temperature, leading to improved visible light absorption. However, their visible-light-driven photocatalytic efficiency increased first and then decreased. The highest value can be observed for the sample reduced at 350 °C, which was 2-, 1.4- and 5-fold that of the samples reduced at 320 °C, 380 °C and 400 °C, respectively. This contradiction can be ascribed to the varied functions of the surface defects with different concentrations in the black TiO2 during the catalytic process. In particular, the defects at low concentrations boost photocatalysis but reverse photocatalysis at high concentrations when they act as charge recombination centers. This study provides significant insight for the fabrication of high-efficiency visible-light-driven catalytic black TiO2 and the understanding of its catalysis mechanism.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa