Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 237, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970008

RESUMO

BACKGROUND: Atherogenic index of plasma (AIP) is a non-traditional lipid parameter that can reflect the burden of atherosclerosis. A lipid profile resembling atherosclerosis emerged during pregnancy. Although lipid metabolism is pivotal in diabetes pathogenesis, there is no evidence linking AIP to gestational diabetes mellitus (GDM). Therefore, our objective was to explore the relationship between AIP and GDM and assess AIP's predictive capability for GDM. METHODS: This was a secondary analysis based on data from a prospective cohort study in Korea involving 585 single pregnant women. AIP was calculated as log10 (TG/HDL). We examined the relationship between AIP and GDM using logistic regression models, curve fitting, sensitivity analyses, and subgroup analyses. Receiver operating characteristic (ROC) analysis was also used to determine the ability of AIP to predict GDM. RESULTS: The average age of the participants was 32.06 ± 3.76 years. The AIP was 0.24 ± 0.20 on average. The GDM incidence was 6.15%. After adjustment for potentially confounding variables, AIP showed a positive linear relationship with GDM (P for non-linearity: 0.801, OR 1.58, 95% CI 1.27-1.97). The robustness of the connection between AIP and GDM was demonstrated by sensitivity analyses and subgroup analyses. An area under the ROC curve of 0.7879 (95% CI 0.7087-0.8671) indicates that AIP is an excellent predictor of GDM. With a specificity of 75.41% and sensitivity of 72.22%, the ideal AIP cut-off value for identifying GDM was 0.3557. CONCLUSIONS: This study revealed that the AIP at 10-14 weeks of gestation was independently and positively correlated with GDM risk. AIP could serve as an early screening and monitoring tool for pregnant women at high risk of GDM, thereby optimizing GDM prevention strategies. TRIAL REGISTRATION: ClinicalTrials.gov registration no. NCT02276144.


Assuntos
Aterosclerose , Biomarcadores , Diabetes Gestacional , Valor Preditivo dos Testes , Humanos , Diabetes Gestacional/sangue , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/epidemiologia , Feminino , Gravidez , Estudos Prospectivos , Adulto , República da Coreia/epidemiologia , Fatores de Risco , Biomarcadores/sangue , Aterosclerose/sangue , Aterosclerose/epidemiologia , Aterosclerose/diagnóstico , Medição de Risco , Incidência , Triglicerídeos/sangue
2.
Inflamm Res ; 73(1): 65-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062164

RESUMO

BACKGROUND: Atherosclerosis, characterized by abnormal arterial lipid deposition, is an age-dependent inflammatory disease and contributes to elevated morbidity and mortality. Senescent foamy macrophages are considered to be deleterious at all stages of atherosclerosis, while the underlying mechanisms remain largely unknown. In this study, we aimed to explore the senescence-related genes in macrophages diagnosis for atherosclerotic plaque progression. METHODS: The atherosclerosis-related datasets were retrieved from the Gene Expression Omnibus (GEO) database, and cellular senescence-associated genes were acquired from the CellAge database. R package Limma was used to screen out the differentially expressed senescence-related genes (DE-SRGs), and then three machine learning algorithms were applied to determine the hub DE-SRGs. Next, we established a nomogram model to further confirm the clinical significance of hub DE-SRGs. Finally, we validated the expression of hub SRG ABI3 by Sc-RNA seq analysis and explored the underlying mechanism of ABI3 in THP-1-derived macrophages and mouse atherosclerotic lesions. RESULTS: A total of 15 DE-SRGs were identified in macrophage-rich plaques, with five hub DE-SRGs (ABI3, CAV1, NINJ1, Nox4 and YAP1) were further screened using three machine learning algorithms. Subsequently, a nomogram predictive model confirmed the high validity of the five hub DE-SRGs for evaluating atherosclerotic plaque progression. Further, the ABI3 expression was upregulated in macrophages of advanced plaques and senescent THP-1-derived macrophages, which was consistent with the bioinformatics analysis. ABI3 knockdown abolished macrophage senescence, and the NF-κB signaling pathway contributed to ABI3-mediated macrophage senescence. CONCLUSION: We identified five cellular senescence-associated genes for atherogenesis progression and unveiled that ABI3 might promote macrophage senescence via activation of the NF-κB pathway in atherogenesis progression, which proposes new preventive and therapeutic strategies of senolytic agents for atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Aterosclerose/genética , Aterosclerose/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Transdução de Sinais
3.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 440-451, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38006215

RESUMO

Hypertrophic scar (HS) is one of the most common sequelae of patients, especially after burns and trauma. The roles of regulatory long noncoding RNAs (lncRNAs) in mediating HS remain underexplored. Human hypertrophic scar-derived fibroblasts (HSFBs) have been shown to exert more potent promoting effects on extracellular matrix (ECM) accumulation than normal skin-derived fibroblasts (NSFBs) and are associated with enhanced HS formation. The purpose of this study is to search for lncRNAs enriched in HSFBs and investigate their roles and mechanisms. LncRNA MSTRG.59347.16 is one of the most highly expressed lncRNAs in HS detected by lncRNA-seq and qRT-PCR and named as hypertrophic scar fibroblast-associated lncRNA (HSFAS). HSFAS overexpression significantly induces fibroblast proliferation, migration, and myofibroblast trans-differentiation and inhibits apoptosis in HSFBs, while knockdown of HSFAS results in augmented apoptosis and attenuated proliferation, migration, and myofibroblast trans-differentiation of HSFBs. Mechanistically, HSFAS suppresses the expression of A disintegrin and metalloproteinase with thrombospondin motifs 8 (ADAMTS8). ADAMTS8 knockdown rescues downregulated HSFAS-mediated fibroblast proliferation, migration, myofibroblast trans-differentiation and apoptosis. Thus, our findings uncover a previously unknown lncRNA-dependent regulatory pathway for fibroblast function. Targeted intervention in the HSFAS-ADAMTS8 pathway is a potential therapy for HS.


Assuntos
Cicatriz Hipertrófica , RNA Longo não Codificante , Humanos , Cicatriz Hipertrófica/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fibroblastos/metabolismo , Apoptose/genética , Proliferação de Células/genética , Transdiferenciação Celular/genética , Proteínas ADAMTS/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38978504

RESUMO

Autophagy is a cellular mechanism for self-renewal that involves the breakdown of cytoplasmic proteins or organelles within lysosomes. Although preeclampsia (PE) exhibits several characteristics that could imply disrupted autophagy, there is limited evidence supporting the notion that impaired placental autophagy directly causes PE, as indicated by differential expression profiling of whole placental tissue. In this study, we aim to explore the significance of autophagy in maintaining pregnancy and its association with PE. First, the RNA-seq results show that 218 genes are differentially expressed in placentas from preeclamptic pregnancies. Notably, KEGG pathway analysis reveals significant enrichment of genes related to autophagy-related signaling pathways, including the PI3K-Akt signaling pathway, the AMPK signaling pathway, and the mTOR signaling pathway. Additionally, our findings indicate an increase in autophagy in placentas from pregnancies complicated by preeclampsia as well as in trophoblasts subjected to hypoxic conditions. Next, we examine the impact of 3-methyladenine (3-MA), a targeted inhibitor of autophagy, on the progression of PE. The administration of 3-MA profoundly alleviates the severity of PE-like symptoms in rats subjected to reduced uterine perfusion pressure (RUPP). The findings from our study suggest that inhibiting autophagy may serve as a promising approach for adjuvant chemotherapy for PE.

5.
Acta Biochim Biophys Sin (Shanghai) ; 55(8): 1184-1192, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021975

RESUMO

Autophagy plays a critical role in the physiology and pathophysiology of hepatocytes. High level of homocysteine (Hcy) promotes autophagy in hepatocytes, but the underlying mechanism is still unknown. Here, we investigate the relationship between Hcy-induced autophagy level and the expression of nuclear transcription factor EB (TFEB). The results show that Hcy-induced autophagy level is mediated by upregulation of TFEB. Silencing of TFEB decreases the level of autophagy-related protein LC3BII/I and increases p62 expression level in hepatocytes after exposure to Hcy. Moreover, the effect of Hcy on the expression of TFEB is regulated by hypomethylation of the TFEB promoter catalyzed by DNA methyltransferase 3b (DNMT3b). In summary, this study shows that Hcy can activate autophagy by inhibiting DNMT3b-mediated DNA methylation and upregulating TFEB expression. These findings provide another new mechanism for Hcy-induced autophagy in hepatocytes.


Assuntos
Autofagia , Metilação de DNA , Hepatócitos , Homocisteína , Autofagia/genética , DNA , Homocisteína/metabolismo , Homocisteína/farmacologia , Humanos , DNA Metiltransferase 3B
6.
Acta Biochim Biophys Sin (Shanghai) ; 55(2): 1-13, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36815373

RESUMO

Accumulating evidence has shown that the apoptosis of trophoblast cells plays an important role in the pathogenesis of preeclampsia, and an intricate interplay between DNA methylation and polycomb group (PcG) protein-mediated gene silencing has been highlighted recently. Here, we provide evidence that the expression of nervous system polycomb 1 (NSPc1), a BMI1 homologous polycomb protein, is significantly elevated in trophoblast cells during preeclampsia, which accelerates trophoblast cell apoptosis. Since NSPc1 acts predominantly as a transcriptional inactivator that specifically represses HOXA11 expression in trophoblast cells during preeclampsia, we further show that NSPc1 is required for DNMT3a recruitment and maintenance of the DNA methylation in the HOXA11 promoter in trophoblast cells during preeclampsia. In addition, we find that the interplay of DNMT3a and NSPc1 represses the expression of HOXA11 and promotes trophoblast cell apoptosis. Taken together, these results indicate that the cooperation between NSPc1 and DNMT3a reduces HOXA11 expression in preeclampsia pathophysiology, which provides novel therapeutic approaches for targeted inhibition of trophoblast cell apoptosis during preeclampsia pathogenesis.


Assuntos
Pré-Eclâmpsia , Trofoblastos , Humanos , Gravidez , Feminino , Trofoblastos/metabolismo , Metilação de DNA , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Regiões Promotoras Genéticas , Proteínas do Grupo Polycomb/metabolismo , Apoptose , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
7.
Lab Invest ; 102(1): 25-37, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725437

RESUMO

Atherosclerosis is a chronic inflammatory vascular disease, and inflammation plays a critical role in its formation and progression. Elevated serum homocysteine (Hcy) is an independent risk factor for atherosclerosis. Previous studies have shown that fatty acid binding protein 4 (FABP4) plays an important role in macrophage inflammation and lipid metabolism in atherosclerosis induced by Hcy. However, the underlying molecular mechanism of FABP4 in Hcy-induced macrophage inflammation remains unknown. In this study, we found that FABP4 activated the Janus kinase 2/signal transducer and activator of transcription 2 (JAK2/STAT2) pathway in macrophage inflammation induced by Hcy. Of note, we further observed that ras-related protein Rap-1a (Rap1a) induced the Tyr416 phosphorylation and membrane translocation of non-receptor tyrosine kinase (c-Src) to activate the JAK2/STAT2 pathway. In addition, the suppressor of cytokine signaling 1 (SOCS1)-a transcriptional target of signal transducer and activator of transcription (STATs) inhibited the JAK2/STAT2 pathway and Rap1a expression via a negative feedback loop. In summary, these results demonstrated that FABP4 promotes c-Src phosphorylation and membrane translocation via Rap1a to activate the JAK2/STAT2 pathway, contributing to Hcy-accelerated macrophage inflammation in ApoE-/- mice.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/genética , Homocisteína/farmacologia , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Proteínas/genética , Transdução de Sinais/genética , Animais , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Células THP-1 , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
8.
Cell Biol Int ; 46(8): 1236-1248, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35347798

RESUMO

Endoplasmic reticulum (ER) stress and apoptosis play a critical role in liver injury. Endoplasmic reticulum oxidoreductase 1α (ERO1α) is an oxidase that exists in the luminal side of the ER membrane, participating in protein folding and secretion and inhibiting apoptosis, but the underlying mechanism on liver injury induced by homocysteine (Hcy) remains obscure. In this study, hyperhomocysteinemia (HHcy) mice model was established in cbs+/- mice by feeding a high-methionine diet for 12 weeks; and cbs+/- mice fed with high-methionine diet exhibited more severe liver injury compared to cbs+/+ mice. Mechanistically, we found that Hcy promoted ER stress and apoptosis of hepatocytes and thereby aggravated liver injury through inhibiting ERO1α expression; accordingly, overexpression of ERO1α remarkably alleviated ER stress and apoptosis of hepatocytes induced by Hcy. Epigenetic modification analysis revealed that Hcy significantly increased levels of DNA methylation and H3 lysine 9 dimethylation (H3K9me2) on ERO1α promoter, which attributed to upregulated DNA methyltransferase 1 (DNMT1) and G9a, respectively. Further study showed that DNMT1 and G9a cooperatively regulated ERO1α expression in hepatocytes exposed to Hcy. Taken together, our work demonstrates that Hcy activates ER stress and apoptosis of hepatocytes by downregulating ERO1α expression via cooperation between DNMT1 and G9a, which provides new insight into the mechanism of Hcy-induced ER stress and apoptosis of hepatocytes in liver injury.


Assuntos
Apoptose , DNA (Citosina-5-)-Metiltransferase 1 , Estresse do Retículo Endoplasmático , Hepatócitos , Histona-Lisina N-Metiltransferase , Homocisteína , Animais , Apoptose/genética , Apoptose/fisiologia , DNA (Citosina-5-)-Metiltransferase 1/genética , Estresse do Retículo Endoplasmático/genética , Hepatócitos/metabolismo , Histona-Lisina N-Metiltransferase/genética , Homocisteína/genética , Homocisteína/metabolismo , Metionina/metabolismo , Camundongos , Oxirredutases/genética
9.
Cardiovasc Drugs Ther ; 36(1): 31-44, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432452

RESUMO

PURPOSE: P-selectin glycoprotein ligand-1 (PSGL-1) acts as a crucial regulator for the inflammatory cells infiltration by mediating the adhesion of leukocytes. However, the role of PSGL-1 in aortic aneurysm remains elusive. Here, we investigated the role of PSGL-1 in aortic aneurysm (AA) development. METHODS: We first detected PSGL-1 expression in samples from aortic aneurysm patients and mouse AA models via western blotting, immunofluorescence, and flow cytometry, and then we used global PSGL-1 knockout mice and their wild type controls to establish an aortic aneurysm model induced by deoxycorticosterone acetate (DOCA) plus high salt (HS). The incidence, fatality rates, and the pathological changes of aortic aneurysm were analyzed in each group. The inflammation, adhesion molecules expression, and PSGL-1 mediated leukocyte-endothelial adhesion and their underlying mechanisms were explored further. RESULTS: Increased PSGL-1 levels were observed in human and mouse aortic aneurysm, and on leukocytes of mice treated with DOCA+HS. PSGL-1 deficiency reduced the incidence and severity of aortic aneurysm significantly, as well as decreased elastin fragmentation, collagen accumulation, and smooth muscle cells degeneration. Mechanistically, the protective effect of PSGL-1 inhibition was mediated by the reduced adhesion molecules, and the subsequently reduced leukocyte-endothelial adhesion through the NF-κB pathway, which finally led to reduced inflammatory cells infiltration and decreased inflammatory factors expression. CONCLUSION: PSGL-1 deficiency is protective against inflammatory cells migration and recruitment in the condition of AA through attenuation of leukocyte-endothelial adhesion. Inhibition of PSGL-1 may be a potential therapeutic target for the prevention and treatment of human AA.


Assuntos
Aneurisma Aórtico/fisiopatologia , Inflamação/fisiopatologia , Glicoproteínas de Membrana/genética , Animais , Aneurisma Aórtico/genética , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Acetato de Desoxicorticosterona , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Humanos , Inflamação/genética , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidade do Paciente , Cloreto de Sódio na Dieta
10.
Acta Biochim Biophys Sin (Shanghai) ; 54(1): 126-136, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35130620

RESUMO

Abnormal elevation of homocysteine (Hcy) level is closely related to the development and progression of chronic kidney disease (CKD), with the molecular mechanisms that are not fully elucidated. Given the demonstration that miR-30a-5p is specifically expressed in glomerular podocytes, in the present study we aimed to investigate the role and potential underlying mechanism of miR-30a-5p in glomerular podocyte apoptosis induced by Hcy. We found that elevated Hcy downregulates miR-30a-5p expression in the mice and Hcy-treated podocytes, and miR-30a-5p directly targets the 3'-untranslated region (3'-UTR) of the forkhead box A1 (FOXA1) and overexpression of miR-30a-5p inhibits FOXA1 expression. By nMS-PCR and MassARRAY quantitative methylation analysis, we showed the increased DNA methylation level of miR-30a-5p promoter both and . Meanwhile, dual-luciferase reporter assay showed that the region between --1400 and --921 bp of miR-30a-5p promoter is a possible regulatory element for its transcription. Mechanistic studies indicated that DNA methyltransferase enzyme 1 (DNMT1) is the key regulator of miR-30a-5p, which in turn enhances miR-30a-5p promoter methylation level and thereby inhibits its expression. Taken together, our results revealed that epigenetic modification of miR-30a-5p is involved in glomerular podocyte injury induced by Hcy, providing a diagnostic marker candidate and novel therapeutic target in CKD induced by Hcy.


Assuntos
Hiper-Homocisteinemia , MicroRNAs , Podócitos , Animais , Apoptose/genética , Metilação de DNA , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Podócitos/metabolismo
11.
Acta Biochim Biophys Sin (Shanghai) ; 54(9): 1222-1233, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35866603

RESUMO

In the present study, we investigate the effect of homocysteine (Hcy) on extracellular-superoxide dismutase (EC-SOD) DNA methylation in the aorta of mice, and explore the underlying mechanism in macrophages, trying to identify the key targets of Hcy-induced EC-SOD methylation changes. ApoE -/- mice are fed different diets for 15 weeks, EC-SOD and DNA methyltransferase 1 (DNMT1) expression levels are detected by RT-PCR and western blot analysis. EC-SOD methylation levels are assessed by ntMS-PCR. After EC-SOD overexpression or knockdown in macrophages, following the transfection of macrophages with pEGFP-N1-DNMT1, the methylation levels of EC-SOD are detected. Our data show that the concentrations of Hcy and the area of atherogenic lesions are significantly increased in ApoE -/- mice fed with a high-methionine diet, and have a positive correlation with the levels of superoxide anions, which indicates that Hcy-activated superoxide anions enhance the development of atherogenic lesions. EC-SOD expression is suppressed by Hcy, and the content of superoxide anion is increased when EC-SOD is silenced by RNAi in macrophages, suggesting that EC-SOD plays a major part in oxidative stress induced by Hcy. Furthermore, the promoter activity of EC-SOD is increased following transfection with the -1/-1100 fragment, and EC-SOD methylation level is significantly suppressed by Hcy, and more significantly decreased upon DNMT1 overexpression. In conclusion, Hcy may alter the DNA methylation status and DNMT1 acts as the essential enzyme in the methyl transfer process to disturb the status of EC-SOD DNA methylation, leading to decreased expression of EC-SOD and increased oxidative stress and atherosclerosis.


Assuntos
Aterosclerose , Metilação de DNA , Camundongos , Animais , Superóxidos , Homocisteína/farmacologia , Aterosclerose/genética , Aterosclerose/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo
12.
Acta Biochim Biophys Sin (Shanghai) ; 55(2): 274-284, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36082934

RESUMO

Hypertrophic scar is a problem for numerous patients, especially after burns, and is characterized by increased fibroblast proliferation and collagen deposition. Increasing evidence demonstrates that lncRNAs contribute to the development and progression of various diseases. However, the function of lncRNAs in hypertrophic scar formation remains poorly characterized. In this study, a novel fibroblast proliferation-associated lncRNA, named lncRNA FPASL (MSTRG.389905.1), which is mainly localized in the cytoplasm, is found to be downregulated in hypertrophic scar, as detected by lncRNA microarray and qRT-PCR. The full-length FPASL is characterized and further investigation confirms that it has no protein-coding potential. FPASL knockdown in fibroblasts triggers fibroblast proliferation, whereas overexpression of FPASL directly attenuates the proliferation of fibroblasts. Furthermore, target genes of the differentially expressed lncRNAs in hypertrophic scars and the matched adjacent normal tissues are enriched in fibroblast proliferation signaling pathways, including the PI3K/AKT and MAPK signaling pathways, as determined by GO annotation and KEGG enrichment analysis. We also demonstrate that knockdown of FPASL activates the PI3K/AKT and MAPK signaling pathways, and specific inhibitors of the PI3K/AKT and MAPK signaling pathways can reverse the proliferation of fibroblasts promoted by FPASL knockdown. Our findings contribute to a better understanding of the role of lncRNAs in hypertrophic scar and suggest that FPASL may act as a potential novel therapeutic target for hypertrophic scar.


Assuntos
Cicatriz Hipertrófica , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cicatriz Hipertrófica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Proliferação de Células/genética , Fibroblastos/metabolismo
13.
Acta Biochim Biophys Sin (Shanghai) ; 54(12): 1-9, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36514215

RESUMO

Long noncoding RNAs (lncRNAs) are increasingly being implicated as key regulators of cell proliferation, apoptosis, and differentiation. However, the molecular mechanisms of specific lncRNAs in the context of hypertrophic scar remain largely unclear. Here, we find that the lncRNA FPASL (fibroblast proliferation-associated LncRNA) is downregulated in HS, and FPASL reduces fibroblast proliferation and colony formation and blocks cell cycle progression. Using GO annotation enrichment analysis along with AZC (a specific inhibitor of DNA methylation), we identify that DNA methylation is responsible for downregulating FPASL in hypertrophic scar. Subsequent studies demonstrate that high expression of DNMT3b inhibits FPASL expression in HS. Mechanistic study reveals a significant increase in fibroblast proliferation after transfection with LNA-FPASL, which is further inhibited by knockdown of DNMT3b. Thus, our study reveals that DNMT3b mediates hypermethylation of the lncRNA FPASL promoter and the downregulation of lncRNA FPASL promotes fibroblast proliferation in hypertrophic scar.


Assuntos
Cicatriz Hipertrófica , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cicatriz Hipertrófica/metabolismo , Metilação de DNA , Proliferação de Células/genética , Fibroblastos/metabolismo
14.
J Mol Cell Cardiol ; 138: 34-48, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733201

RESUMO

Homocysteine (Hcy) is an independent risk factor for atherosclerosis, which is characterized by lipid accumulation in the atherosclerotic plaque. Increasing evidence supports that as the main receptor of high-density lipoprotein, scavenger receptor class B member 1 (SCARB1) is protective against atherosclerosis. However, the underlying mechanism regarding it in Hcy-mediated atherosclerosis remains unclear. Here, we found the remarkable inhibition of SCARB1 expression in atherosclerotic plaque and Hcy-treated foam cells, whereas overexpression of SCARB1 can suppress lipid accumulation in foam cells following Hcy treatment. Analysis of SCARB1 promoter showed that no significant change of methylation level was observed both in vivo and in vitro under Hcy treatment. Moreover, it was found that the negative regulation of DNMT3b on SCARB1 was due to the decreased recruitment of SP1 to SCARB1 promoter. Thus, we concluded that inhibition of SCARB1 expression induced by DNMT3b at least partly accelerated Hcy-mediated atherosclerosis through promoting lipid accumulation in foam cells, which was attributed to the decreased binding of SP1 to SCARB1 promoter. In our point, these findings will provide novel insight into an epigenetic mechanism for atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Antígenos CD36/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Homocisteína/efeitos adversos , Transdução de Sinais , Fator de Transcrição Sp1/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Aterosclerose/complicações , Metilação de DNA/genética , Dieta , Progressão da Doença , Regulação para Baixo/genética , Células Espumosas/metabolismo , Células HEK293 , Humanos , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/patologia , Masculino , Metionina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Placa Aterosclerótica/complicações , Placa Aterosclerótica/patologia , Regiões Promotoras Genéticas , Ligação Proteica , Células THP-1 , DNA Metiltransferase 3B
15.
Circ J ; 84(4): 616-625, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32115441

RESUMO

BACKGROUND: Ischemic postconditioning (IPostC) is an endogenous protective mechanism to reduce ischemia-reperfusion (I/R) injury. However, whether IPostC protects aged cardiomyocytes against I/R injury is not fully understood. Considering the protective function of microRNA 30a (miR-30a) against ischemia-induced injury in H9C2 cells, its role in the protective effects of IPostC on I/R injury of aged cardiomyocytes was investigated further.Methods and Results:To mimic I/R and IPostC in vitro, the aged cardiomyocyte model for hypoxia postconditioning (HPostC) treatment was established by 9 days of incubation with 8 mg/mL D-galactose and then followed by exposure to hypoxic environment. HPostC significantly alleviated hypoxia/reoxygenation (H/R) injury and reduced autophagy of aged cardiomyocytes, as evidenced by decreased LC3B-II expression and increased p62 by Western blot. Quantified by quantitative real-time polymerase chain reaction (qRT-PCR), miR-30a was increased in aged cardiomyocytes treated with HPostC compared with I/R injury group. Overexpression of miR-30a by LV3-rno-miR-30a mimic promoted cardioprotective effect of HPostC in aged cardiomyocytes by suppressing BECN1-mediated autophagy, all of which was abrogated by knockdown of miR-30a expression. Epigenetic analyses demonstrated that HPostC reduced DNA methyltransferase 3b-mediated DNA hypomethylation levels at miR-30a promoter, leading to upregulation of miR-30a. CONCLUSIONS: HPostC protected aged cardiomyocytes survival against H/R injury via DNMT3b-dependent activation of miR-30a. miR-30a could be a potential therapeutic target for ischemic myocardial infarction.


Assuntos
Autofagia , Senescência Celular , Metilação de DNA , Epigênese Genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Hipóxia Celular , Linhagem Celular , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , MicroRNAs/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Regiões Promotoras Genéticas , Ratos , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , DNA Metiltransferase 3B
16.
J Cell Mol Med ; 23(7): 4611-4626, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31104361

RESUMO

It is well-established that homocysteine (Hcy) is an independent risk factor for atherosclerosis. Hcy can promote vascular smooth muscle cell (VSMC) proliferation, it plays a key role in neointimal formation and thus contribute to arteriosclerosis. However, the molecular mechanism on VSMCs proliferation underlying atherosclerosis is not well elucidated. Mitofusin-2 (MFN2) is an important transmembrane GTPase in the mitochondrial outer membrane and it can block cells in the G0/G1 stage of the cell cycle. To investigate the contribution of aberrant MFN2 transcription in Hcy-induced VSMCs proliferation and the underlying mechanisms. Cell cycle analysis revealed a decreased proportion of VSMCs in G0/G1 and an increased proportion in S phase in atherosclerotic plaque of APOE-/- mice with hyperhomocystinaemia (HHcy) as well as in VSMCs exposed to Hcy in vitro. The DNA methylation level of MFN2 promoter was obviously increased in VSMCs treated with Hcy, leading to suppressed promoter activity and low expression of MFN2. In addition, we found that the expression of c-Myc was increased in atherosclerotic plaque and VSMCs treated with Hcy. Further study showed that c-Myc indirectly regulates MFN2 expression is duo to the binding of c-Myc to DNMT1 promoter up-regulates DNMT1 expression leading to DNA hypermethylation of MFN2 promoter, thereby inhibits MFN2 expression in VSMCs treated with Hcy. In conclusion, our study demonstrated that Hcy-induced hypermethylation of MFN2 promoter inhibits the transcription of MFN2, leading to VSMCs proliferation in plaque formation, and the increased binding of c-Myc to DNMT1 promoter is a new and relevant molecular mechanism.


Assuntos
Aterosclerose/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , GTP Fosfo-Hidrolases/genética , Homocisteína/farmacologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transcrição Gênica , Animais , Aterosclerose/patologia , Sequência de Bases , Proliferação de Células/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
17.
Exp Cell Res ; 362(1): 217-226, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155363

RESUMO

Endothelial progenitor cells (EPCs) contribute to neovasculogenesis and reendothelialization of damaged blood vessels to maintain the endothelium. Dysfunction of EPCs is implicated in the pathogenesis of vascular injury induced by homocysteine (Hcy). We aimed to investigate the role of Cyclin A in Hcy-induced EPCs dysfunction and explore its molecular mechanism. In this study, by treatment of EPCs with Hcy, we found that the expression of Cyclin A mRNA and protein were significantly downregulated in a dose-dependent manner. Knockdown of Cyclin A prominently reduced proliferation of EPCs, while over-expression of Cyclin A significantly promoted the cell proliferation, suggesting that Hcy inhibits EPCs proliferation through downregulation of Cyclin A expression. In addition, epigenetic study also demonstrated that Hcy induces DNA hypomethylation of the Cyclin A promoter in EPCs through downregulated expression of DNMT1. Moreover, we found that Hcy treatment of EPCs leads to increased SAM, SAH and MeCP2, while the ratio of SAM/SAH and MBD expression decrease. In summary, our results indicate that Hcy inhibits Cyclin A expression through hypomethylation of Cyclin A and thereby suppress EPCs proliferation. These findings demonstrate a novel mechanism of DNA methylation mediated by DNMT1 in prevention of Hcy associated cardiovascular disease.


Assuntos
Proliferação de Células/fisiologia , Ciclina A/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA/fisiologia , Células Progenitoras Endoteliais/metabolismo , Homocisteína/metabolismo , Animais , Células Cultivadas , Regulação para Baixo/fisiologia , Epigênese Genética/fisiologia , Humanos , Regiões Promotoras Genéticas/fisiologia , Ratos
18.
J Cell Biochem ; 119(10): 8588-8599, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30058081

RESUMO

Abnormal trophoblast cell apoptosis is implicated in the pathogenesis of pregnancy-related disorders including preeclampsia (PE), and endoplasmic reticulum (ER) stress has been considered as a novel pathway in the regulation of cell apoptosis. In this study, we observed that both apoptosis and ER stress are triggered in trophoblast cells under hypoxia as well as in the placenta of PE rats. Quantitative polymerase chain reaction and Western blot analysis showed that the expression of endoplasmic reticulum disulfide oxidase 1α (ERO1α) is suppressed in trophoblast cells under hypoxia due to the hypermethylation of the ERO1α promoter region, and the inhibition of ERO1α expression plays an important role in ER stress and trophoblast cell apoptosis. Furthermore, we found that DNA methyltransferase 1 (DNMT1) is a key methyltransferase for DNA methylation in the regulation of ERO1α expression, and the binding level of DNMT1 to the ERO1α promoter is markedly elevated under hypoxia although DNMT1 expression is inhibited by hypoxia, suggesting that the binding level of DNMT1 to the ERO1α promoter region rather than the DNMT1 expression level contributes to the hypermethylation of ERO1α. Taken together, these results demonstrate that the hypermethylation of ERO1α mediated by increased binding of DNMT1 to the ERO1α promoter leads to trophoblast cell apoptosis through ER stress in the placenta of PE rats, which shed insight into the etiology of PE and might present a validated therapeutic target for the treatment of PE.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Glicoproteínas de Membrana/metabolismo , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Trofoblastos/metabolismo , Análise de Variância , Animais , Hipóxia Celular , Linhagem Celular , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Feminino , Humanos , Oxirredutases/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley
19.
J Cell Biochem ; 118(9): 2921-2932, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28230279

RESUMO

Folate deficiency is a known risk factor for liver injury; however, the underlying mechanism remains unclear. In this study, we employed a high homocysteine-induced liver injury model of Apolipoprotein E-deficient (ApoE-/- ) mice fed high-methionine diet and found that high homocysteine induced endoplasmic reticulum (ER) stress and liver cell apoptosis by downregulation of cystic fibrosis transmembrane conductance regulator (CFTR) expression; observations that were attenuated with supplementation of dietary folate. The regulation on CFTR expression was mediated by CFTR promoter methylation and trimethylation of lysine 27 on histone H3 (H3K27me3). Mechanistically, folate inhibited homocysteine-induced CFTR promoter methylation and H3K27me3, which resulted in upregulation of CFTR expression, and reduced ER stress and liver cell apoptosis. Further study showed that folate inhibited the expression of DNA methyltransferase 1 and enhancer of zeste homolog 2, downregulated the cellular concentrations of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) and upregulated the SAM/SAH ratio, leading to the inhibition of Hcy-induced DNA hypermethylation and H3K27me3 in CFTR promoter. In conclusion, our results provide insight into the protective role of folate in homocysteine-induced ER stress and liver cell apoptosis through the regulation of CFTR expression. J. Cell. Biochem. 118: 2921-2932, 2017. © 2017 Wiley Periodicals, Inc. HIGHLIGHTS: Folate protects hepatocytes of hyperhomocysteinemia mice from apoptosis. Folate alleviates Hcy-induced hepatocyte apoptosis. Folate inhibits Hcy-induced ER stress via upregulation of CFTR expression in hepatocytes. Folate inhibits Hcy-induced methylation of CFTR promotor and H3K27me3.


Assuntos
Apoptose/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Metilação de DNA/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácido Fólico/farmacologia , Hepatócitos/metabolismo , Hiper-Homocisteinemia/metabolismo , Regiões Promotoras Genéticas , Animais , Apoptose/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Metilação de DNA/genética , Estresse do Retículo Endoplasmático/genética , Hepatócitos/patologia , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/patologia , Camundongos , Camundongos Knockout
20.
J Cell Biochem ; 118(12): 4617-4627, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28485501

RESUMO

Hyperhomocysteinemia (HHcy) promotes atherogenesis by modification of histone acetylation patterns and regulation of miRNA expression while the underlying molecular mechanisms are not well known. In this study, we investigated the effects of homocysteine (Hcy) on the expression of histone deacetylase 1 (HDAC1) and tested our hypothesis that Hcy-induced atherosclerosis is mediated by increased HDAC1 expression, which is regulated by miR-34a. The expression of HDAC1 increased and acetylation of histone H3 at lysine 9 (H3K9ac) decreased in the aorta of ApoE-/- mice fed with high methionine diet, whereas miR-34a expression was inhibited. Over-expression of HDAC1 inhibited H3K9ac level and promoted the accumulation of total cholesterol, free cholesterol, and triglycerides in the foam cells. Furthermore, up-regulation of miR-34a reduced HDAC1 expression and inhibited the accumulation of total cholesterol (TC), free cholesterol (FC), and triglycerides (TG) in the foam cells. These data suggest that HDAC1-related H3K9ac plays a key role in Hcy-mediated lipid metabolism disorders, and that miR-34a may be a novel therapeutic target in Hcy-related atherosclerosis. J. Cell. Biochem. 118: 4617-4627, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Aterosclerose/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Histona Desacetilase 1/metabolismo , Homocisteína/metabolismo , MicroRNAs/metabolismo , Triglicerídeos/metabolismo , Acetilação , Animais , Apolipoproteínas E/deficiência , Aterosclerose/genética , Aterosclerose/patologia , Colesterol/genética , Células Espumosas/patologia , Histona Desacetilase 1/genética , Homocisteína/genética , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , Triglicerídeos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa