Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Gastroenterol Hepatol ; 38(7): 1099-1106, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37271943

RESUMO

Liver fibrosis, acute liver injury or liver failure, liver tumors, and immune rejection after liver transplantation are common clinical liver diseases. Immune responses are the key to determining the prognosis of liver diseases. Liver transplantation could be the last resort for patients with liver failure. However, the use of liver transplantation is limited because of the scarcity of organ donors, immunological rejection in recipients, and high cost. Mesenchymal stem cells (MSCs) are pluripotent adult stem cells with extensive anti-inflammatory and immunomodulation effects. MSCs can be effectively used for treating liver diseases but without the limitations that are associated with liver transplantation. Therefore, several clinical trials have utilized MSCs for the treatment of refractory liver diseases and the related mechanism is increasingly being elucidated. We have mainly summarized the recent studies that focus on the immunomodulation mechanism of MSC therapy in liver diseases. Further, we have presented our insights on the prospects of using MSCs in the treatment of liver diseases.


Assuntos
Hepatopatias , Falência Hepática , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Adulto , Humanos , Hepatopatias/terapia , Imunomodulação
2.
J Hepatol ; 75(2): 454-461, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34019941

RESUMO

Fatty liver disease associated with metabolic dysfunction is of increasing concern in mainland China, the world's most populous country. The incidence of fatty liver disease is highest in China, surpassing the incidence in European countries and the USA. An international consensus panel recently published an influential report recommending a novel definition of fatty liver disease associated with metabolic dysfunction. This recommendation includes a switch in name from non-alcoholic fatty liver disease (NAFLD) to metabolic (dysfunction)-associated fatty liver disease (MAFLD) and adoption of a set of positive criteria for disease diagnosis that are independent of alcohol intake or other liver diseases. Given the unique importance of this proposal, the Chinese Society of Hepatology (CSH) invited leading hepatologists and gastroenterologists representing their respective provinces and cities to reach consensus on alternative definitions for fatty liver disease from a national perspective. The CSH endorses the proposed change from NAFLD to MAFLD (supported by 95.45% of participants). We expect that the new definition will result in substantial improvements in health care for patients and advance disease awareness, public health policy, and political, scientific and funding outcomes for MAFLD in China.


Assuntos
Fígado Gorduroso/fisiopatologia , Gastroenterologia/tendências , China , Fígado Gorduroso/classificação , Gastroenterologia/organização & administração , Humanos
3.
Liver Int ; 41(4): 720-730, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33351265

RESUMO

BACKGROUND & AIMS: The outbreak of coronavirus disease 2019 (COVID-19) has been declared a pandemic. Although COVID-19 is caused by infection in the respiratory tract, extrapulmonary manifestations including dysregulation of the immune system and hepatic injury have been observed. Given the high prevalence of hepatitis B virus (HBV) infection in China, we sought to study the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and HBV coinfection in patients. METHODS: Blood samples of 50 SARS-CoV-2 and HBV coinfected patients, 56 SARS-CoV-2 mono-infected patients, 57 HBeAg-negative chronic HBV patient controls and 57 healthy controls admitted to Renmin Hospital of Wuhan University were collected in this study. Complete blood count and serum biochemistry panels including markers indicative of liver functions were performed. Cytokines including IFN-γ, TNF-α, IL-2, IL-4, IL-6 and IL-10 were evaluated. T cell, B cell and NK cell counts were measured using flow cytometry. RESULTS: SARS-CoV-2 and HBV coinfection did not significantly affect the outcome of the COVID-19. However, at the onset of COVID-19, SARS-CoV-2 and HBV coinfected patients showed more severe monocytopenia and thrombocytopenia as well as more disturbed hepatic function in albumin production and lipid metabolism. Most of the disarrangement could be reversed after recovery from COVID-19. CONCLUSIONS: While chronic HBV infection did not predispose COVID-19 patients to more severe outcomes, our data suggest SARS-CoV-2 and HBV coinfection poses a higher extent of dysregulation of host functions at the onset of COVID-19. Thus, caution needs to be taken with the management of SARS-CoV-2 and HBV coinfected patients.


Assuntos
COVID-19/complicações , Hepatite B Crônica/complicações , Adulto , COVID-19/sangue , COVID-19/imunologia , Coinfecção , Contagem de Eritrócitos , Feminino , Hepatite B Crônica/sangue , Hepatite B Crônica/imunologia , Humanos , Testes de Função Hepática , Masculino , Contagem de Plaquetas , Estudos Retrospectivos , SARS-CoV-2/imunologia , Adulto Jovem
4.
Artif Organs ; 45(7): 762-769, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33326621

RESUMO

Our aim was to investigate the effect of artificial liver blood purification treatment on the survival of severe/critical patients with coronavirus disease 2019 (COVID-19). A total of 101 severe and critical patients with coronavirus SARS-CoV-2 infection were enrolled in this open, case-control, multicenter, prospective study. According to the patients' and their families' willingness, they were divided into two groups. One was named the treatment group, in which the patients received artificial liver therapy plus comprehensive treatment (n = 50), while the other was named the control group, in which the patients received only comprehensive treatment (n = 51). Clinical data and laboratory examinations, as well as the 28-day mortality rate, were collected and analyzed. Baseline data comparisons on average age, sex, pre-treatment morbidity, initial symptoms, vital signs, pneumonia severity index score, blood routine examination and biochemistry indices etc. showed no difference between the two groups. Cytokine storm was detected, with a significant increase of serum interleukin-6 (IL-6) level. The serum IL-6 level decreased from 119.94 to 20.49 pg/mL in the treatment group and increased from 40.42 to 50.81 pg/mL in the control group (P < .05), indicating that artificial liver therapy significantly decreased serum IL-6. The median duration of viral nucleic acid persistence was 19 days in the treatment group (ranging from 6 to 67 days) and 17 days in the control group (ranging from 3 to 68 days), no significant difference was observed (P = .36). As of 28-day follow-up,17 patients in the treatment group experienced a median weaning time of 24 days, while 11 patients in the control group experienced a median weaning time of 35 days, with no significant difference between the two groups (P = .33). The 28-day mortality rates were 16% (8/50) in the treatment group and 50.98% (26/51) in the control group, with a significant difference (z = 3.70, P < .001). Cytokine storm is a key factor in the intensification of COVID-19 pneumonia. The artificial liver therapy blocks the cytokine storm by clearing inflammatory mediators, thus preventing severe cases from progressing to critically ill stages and markedly reducing short-term mortality.


Assuntos
COVID-19/terapia , Síndrome da Liberação de Citocina/prevenção & controle , Fígado Artificial , Troca Plasmática/instrumentação , Idoso , Biomarcadores/sangue , COVID-19/sangue , COVID-19/mortalidade , COVID-19/virologia , Estudos de Casos e Controles , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/mortalidade , Síndrome da Liberação de Citocina/virologia , Citocinas/sangue , Feminino , Mortalidade Hospitalar , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Troca Plasmática/efeitos adversos , Troca Plasmática/mortalidade , Estudos Prospectivos , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Fatores de Tempo , Resultado do Tratamento , Carga Viral
5.
Eur J Immunol ; 48(4): 683-695, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29331106

RESUMO

Natural killer cell (NK cell)-based immunotherapy is a promising therapeutic strategy for hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying the regulation of NK cell function in the tumor sites are not completely elucidated. In this study, we identified the enhanced expression of kelch repeat and BTB (POZ) domain containing 2 (Kbtbd2) in intratumoral NK cells in a mouse HCC implantation model as a negative regulator of NK cells. To investigate this interaction, we used a Tet-on inducible expression system to control Kbtbd2 expression in an immortalized mouse NK cell line KIL C.2. With this approach, we found that overexpression of Kbtbd2 reduced KIL C.2 cell proliferation, decreased expression certain of Ly49 receptor family members, and substantially impaired cytotoxic activity of KIL C.2 cells in vitro. Moreover, phosphorylation of mTOR and its target 4E-binding protein 1 was reduced in Kbtbd2-expressing KIL C.2 cells, along with down-regulated phosphorylation of Erk1/2. Adoptively transferred Kbtbd2-expressing KIL C.2 cells exhibited weaker tumoricidal effect on hepatocellular carcinoma cells in the HCC implantation model, in comparison with transferred control KIL C.2 cells. Taken together, our investigation indicates that Kbtbd2 is an inhibitory molecule for the tumoricidal activity of KIL C.2 cells and perhaps intratumoral NK cells.


Assuntos
Carcinoma Hepatocelular/terapia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Neoplasias Hepáticas/terapia , Serina-Treonina Quinases TOR/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Transferência Adotiva/métodos , Animais , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Fatores de Iniciação em Eucariotos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Fosfoproteínas/metabolismo , Fosforilação , Complexos Ubiquitina-Proteína Ligase/genética
6.
Genes Dis ; 11(3): 101115, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299199

RESUMO

The liver is an important metabolic and detoxification organ and hence demands a large amount of energy, which is mainly produced by the mitochondria. Liver tissues of patients with alcohol-related or non-alcohol-related liver diseases contain ultrastructural mitochondrial lesions, mitochondrial DNA damage, disturbed mitochondrial dynamics, and compromised ATP production. Overproduction of mitochondrial reactive oxygen species induces oxidative damage to mitochondrial proteins and mitochondrial DNA, decreases mitochondrial membrane potential, triggers hepatocyte inflammation, and promotes programmed cell death, all of which impair liver function. Mitochondrial DNA may be a potential novel non-invasive biomarker of the risk of progression to liver cirrhosis and hepatocellular carcinoma in patients infected with the hepatitis B virus. We herein present a review of the mechanisms of mitochondrial dysfunction in the development of acute liver injury and chronic liver diseases, such as hepatocellular carcinoma, viral hepatitis, drug-induced liver injury, alcoholic liver disease, and non-alcoholic fatty liver disease. This review also discusses mitochondrion-centric therapies for treating liver diseases.

7.
Biomed Pharmacother ; 171: 116133, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198960

RESUMO

Chronic Liver fibrosis may progress to liver cirrhosis and hepatocellular carcinoma (HCC), hence cause a substantial global burden. However, effective therapies for blocking fibrosis are still lacking. Although mesenchymal stem cells (MSCs) have been proven beneficial to liver regeneration after damage, the underlying mechanism of their therapeutic effects are not fully understood. Oxidative stress and mitochondrial functionality alteration directly contributes to the hepatocyte apoptosis and development of liver fibrosis. This study aims to elucidate the mechanism by which hUC-MSC alleviates liver fibrosis and mitochondrial dysfunction. RNA-sequencing was performed to characterize the transcriptomic changes after implantation of hUC-MSCs in mice with liver fibrosis. Next, western blot, RT-PCR, immunohistochemical and immunofluorescence staining were used to evaluate the expression of different genes in vitro and in vivo. Additionally, mitochondrial morphological and dynamic changes, ROS content, and ATP production were examined. Slc25a47, a newly identified liver-specific mitochondrial NAD+ transporter, was notably reduced in CCl4-treated mice and H2O2-stimulated hepatocytes. Conversely, hUC-MSCs increased the Slc25a47 expression and NAD+ level within mitochondria, thereby enhanced Sirt3 protein activity and alleviated mitochondrial dysfunction in the liver. Furthermore, Slc25a47 knockdown could partially abrogate the protective effects of hUC-MSCs on H2O2-induced mitochondrial fission and oxidative stress in hepatocytes. Our study illustrates that Slc25a47 is a key molecular for hUC-MSCs to improve liver fibrosis and regulates mitochondrial function through Sirt3 for the first time, and providing a theoretical basis for the clinical translation of hUC-MSCs transplantation in the treatment of patients with liver fibrosis/cirrhosis.


Assuntos
Cirrose Hepática , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doenças Mitocondriais , Proteínas de Transporte da Membrana Mitocondrial , Sirtuína 3 , Animais , Humanos , Camundongos , Peróxido de Hidrogênio/farmacologia , Cirrose Hepática/metabolismo , Cirrose Hepática/terapia , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , NAD/metabolismo , Transdução de Sinais , Sirtuína 3/metabolismo , Cordão Umbilical/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
8.
Chin Med J (Engl) ; 137(4): 457-464, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37455323

RESUMO

BACKGROUND: Hypertension and non-alcoholic fatty liver disease (NAFLD) share several pathophysiologic risk factors, and the exact relationship between the two remains unclear. Our study aims to provide evidence concerning the relationship between hypertension and NAFLD by analyzing data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 and Mendelian randomization (MR) analyses. METHODS: Weighted multivariable-adjusted logistic regression was applied to assess the relationship between hypertension and NAFLD risk by using data from the NHANES 2017-2018. Subsequently, a two-sample MR study was performed using the genome-wide association study (GWAS) summary statistics to identify the causal association between hypertension, systolic blood pressure (SBP), diastolic blood pressure (DBP), and NAFLD. The primary inverse variance weighted (IVW) and other supplementary MR approaches were conducted to verify the causal association between hypertension and NAFLD. Sensitivity analyses were adopted to confirm the robustness of the results. RESULTS: A total of 3144 participants were enrolled for our observational study in NHANES. Weighted multivariable-adjusted logistic regression analysis suggested that hypertension was positively related to NAFLD risk (odds ratio [OR] = 1.677; 95% confidence interval [CI], 1.159-2.423). SBP ≥130 mmHg and DBP ≥80 mmHg were also significantly positively correlated with NAFLD. Moreover, hypertension was independently connected with liver steatosis ( ß = 7.836 [95% CI, 2.334-13.338]). The results of MR analysis also supported a causal association between hypertension (OR = 7.203 [95% CI, 2.297-22.587]) and NAFLD. Similar results were observed for the causal exploration between SBP (OR = 1.024 [95% CI, 1.003-1.046]), DBP (OR = 1.047 [95% CI, 1.005-1.090]), and NAFLD. The sensitive analysis further confirmed the robustness and reliability of these findings (all P >0.05). CONCLUSION: Hypertension was associated with an increased risk of NAFLD.


Assuntos
Hipertensão , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Inquéritos Nutricionais , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Reprodutibilidade dos Testes , Hipertensão/genética
9.
J Clin Transl Hepatol ; 12(2): 123-133, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38343609

RESUMO

Background and Aims: Accumulating evidence highlights the association between the gut microbiota and liver cirrhosis. However, the role of the gut microbiota in liver cirrhosis remains unclear. Methods: We first assessed the differences in the composition of the bacterial community between CCl4-induced liver cirrhosis and control mice using 16S rRNA sequencing. We then performed a two-sample Mendelian randomization (MR) analysis to reveal the underlying causal relationship between the gut microbiota and liver cirrhosis. Causal relationships were analyzed using primary inverse variance weighting (IVW) and other supplemental MR methods. Furthermore, fecal samples from liver cirrhosis patients and healthy controls were collected to validate the results of the MR analysis. Results: Analysis of 16S rRNA sequencing indicated significant differences in gut microbiota composition between the cirrhosis and control groups. IVW analyses suggested that Alphaproteobacteria, Bacillales, NB1n, Rhodospirillales, Dorea, Lachnospiraceae, and Rhodospirillaceae were positively correlated with the risk of liver cirrhosis, whereas Butyricicoccus, Hungatella, Marvinbryantia, and Lactobacillaceae displayed the opposite effects. However, the weighted median and MR-PRESSO estimates further showed that only Butyricicoccus and Marvinbryantia presented stable negative associations with liver cirrhosis. No significant heterogeneity or horizontal pleiotropy was observed in the sensitivity analysis. Furthermore, the result of 16S rRNA sequencing also showed that healthy controls had a higher relative abundance of Butyricicoccus and Marvinbryantia than liver cirrhosis patients. Conclusions: Our study provides new causal evidence for the link between gut microbiota and liver cirrhosis, which may contribute to the discovery of novel strategies to prevent liver cirrhosis.

10.
J Clin Transl Hepatol ; 11(4): 787-799, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37408817

RESUMO

Background and Aims: Liver cirrhosis can lead to liver failure and eventually death. Macrophages are the main contributors to cirrhosis and have a bidirectional role in regulating matrix deposition and degradation. Macrophage-based cell therapy has been developed as an alternative to liver transplantation. However, there is insufficient evidence regarding its safety and efficacy. In this study, we aimed to explore the effect of combining insulin-like growth factor 2 (IGF2) with bone marrow-derived macrophages (BMDMs) to treat mice with liver cirrhosis. Methods: We assessed liver inflammation, fibrosis regression, liver function, and liver regeneration in mice with CCl4-induced cirrhosis and treated with BMDM only or IGF2 + BMDM. We performed in vitro experiments in which activated hepatic stellate cells (HSCs) were co-cultured with macrophages in the presence or absence of IGF2. The polarity of macrophages and the degree of inhibition of HSCs were examined. The effect of IGF2 on macrophages was also verified by the overexpression of IGF2. Results: Combining IGF2 with BMDM reduced liver inflammation and fibrosis and increased hepatocyte proliferation. Combining IGF2 with BMDM was more effective than using BMDM alone. In vitro experiments demonstrated that IGF2 inhibited HSCs activation by upregulating NR4A2 to promote the anti-inflammatory macrophages phenotype. IGF2 also increased the synthesis of matrix metalloproteinases (MMPs) by macrophages, which may explain why administering IGF2 combined with BMDM was more effective than administering BMDM only. Conclusions: Our study provides a theoretical basis for the future use of BMDM-based cell therapy to treat liver cirrhosis.

11.
Biomolecules ; 14(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275754

RESUMO

Liver cirrhosis remains a significant global public health concern, with liver transplantation standing as the foremost effective treatment currently available. Therefore, investigating the pathogenesis of liver cirrhosis and developing novel therapies is imperative. Mitochondrial dysfunction stands out as a pivotal factor in its development. This study aimed to elucidate the relationship between mitochondria dysfunction and liver cirrhosis using bioinformatic methods to unveil its pathogenesis. Initially, we identified 460 co-expressed differential genes (co-DEGs) from the GSE14323 and GSE25097 datasets, alongside their combined datasets. Functional analysis revealed that these co-DEGs were associated with inflammatory cytokines and cirrhosis-related signaling pathways. Utilizing weighted gene co-expression network analysis (WCGNA), we screened module genes, intersecting them with co-DEGs and oxidative stress-related mitochondrial genes. Two algorithms (least absolute shrinkage and selection operator (LASSO) regression and SVE-RFE) were then employed to further analyze the intersecting genes. Finally, COX7A1 and IFI27 emerged as identifying genes for liver cirrhosis, validated through a receiver operating characteristic (ROC) curve analysis and related experiments. Additionally, immune infiltration highlighted a strong correlation between macrophages and cirrhosis, with the identifying genes (COX7A1 and IFI27) being significantly associated with macrophages. In conclusion, our findings underscore the critical role of oxidative stress-related mitochondrial genes (COX7A1 and IFI27) in liver cirrhosis development, highlighting their association with macrophage infiltration. This study provides novel insights into understanding the pathogenesis of liver cirrhosis.


Assuntos
Cirrose Hepática , Transplante de Fígado , Humanos , Cirrose Hepática/genética , Algoritmos , Biologia Computacional , Citocinas , Proteínas de Membrana
12.
Int Immunopharmacol ; 123: 110456, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37494836

RESUMO

BACKGROUND: Few effective anti-fibrotic therapies are currently available for liver cirrhosis. Mesenchymal stromal cells (MSCs) ameliorate liver fibrosis and contribute to liver regeneration after cirrhosis, attracting much attention as a potential therapeutic strategy for the disease. However, the underlying molecular mechanism of their therapeutic effect is still unclear. Here, we investigated the effect of human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs) in treating liver cirrhosis and their underlying mechanisms. METHODS: We used carbon tetrachloride (CCl4)-induced mice as liver cirrhosis models and treated them with hUC-MSCs via tail vein injection. We assessed the changes in liver function, inflammation, and fibrosis by histopathology and serum biochemistry and explored the mechanism of hUC-MSCs by RNA sequencing (RNA-seq) using liver tissues. In addition, we investigated the effects of hUC-MSCs on hepatic stellate cells (HSC) and macrophages by in vitro co-culture experiments. RESULTS: We found that hUC-MSCs considerably improved liver function and attenuated liver inflammation and fibrosis in CCl4-injured mice. We also showed that these cells exerted therapeutic effects by regulating the Hippo/YAP/Id1 axis in vivo. Our in vitro experiments demonstrated that hUC-MSCs inhibit HSC activation by regulating the Hippo/YAP signaling pathway and targeting Id1. Moreover, hUC-MSCs also alleviated liver inflammation by promoting the transformation of macrophages to an anti-inflammatory phenotype. CONCLUSIONS: Our study reveals that hUC-MSCs relieve liver cirrhosis in mice through the Hippo/YAP/Id1 pathway and macrophage-dependent mechanisms, providing a theoretical basis for the future use of these cells as a potential therapeutic strategy for patients with liver cirrhosis.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Humanos , Camundongos , Fibrose , Inflamação/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/terapia , Cirrose Hepática/metabolismo , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Via de Sinalização Hippo , Proteínas de Sinalização YAP/metabolismo , Proteína 1 Inibidora de Diferenciação/metabolismo
13.
Tissue Cell ; 84: 102198, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37604091

RESUMO

Chronic liver disease inevitably progresses to liver cirrhosis, significantly compromising patients' overall survival and quality of life. However, a glimmer of hope emerges with the emergence of mesenchymal stem cells, possessing remarkable abilities for self-renewal, differentiation, and immunomodulation. Leveraging their potential, MSCs have become a focal point in both basic and clinical trials, offering a promising therapeutic avenue to impede fibrosis progression and enhance the life expectancy of individuals battling hepatic cirrhosis. This comprehensive review serves to shed light on the origin of MSCs, the intricate mechanisms underlying cirrhosis treatment, and the cutting-edge advancements in basic and clinical research surrounding MSC-based therapies for liver cirrhosis patients.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Qualidade de Vida , Cirrose Hepática/terapia , Diferenciação Celular
14.
Stem Cell Res Ther ; 14(1): 267, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37742014

RESUMO

BACKGROUND: Recent studies have shown that mesenchymal stem cell (MSC) therapy has potential therapeutic effects for patients with end-stage liver diseases. However, a consensus on the efficacy and safety of MSCs has not been reached. METHODS: A systemic literature review was conducted by searching the Cochrane Library and PubMed databases for articles that evaluated the impact of MSC therapy on the outcomes among patients with end-stage liver disease. Various parameters, including pre- and post-treatment model of end-stage liver disease (MELD) score, serum albumin (ALB), total bilirubin (TB), coagulation function, aminotransferase, and survival rate, were evaluated. RESULTS: This meta-analysis included a final total of 13 studies and 854 patients. The results indicated improved liver parameters following MSC therapy at different time points, including in terms of MELD score, TB level, and ALB level, compared with conventional treatment. Furthermore, the MSC treatment increased the overall survival rate among patients with liver cirrhosis and acute-on-chronic liver failure (ACLF). The changes in transaminase level and coagulation function differed between the different therapies at various post-treatment time points, indicating that MSC therapy provided no significant benefits in this regard. The further subgroup analysis stratified by liver background revealed that patients with ACLF benefit more from MSC therapy at most time points with improved liver function, including in terms of MELD score, TB level, and ALB level. In addition, no serious side effects or adverse events were reported following MSC therapy. CONCLUSIONS: The meta-analysis results suggest that MSC therapy is safe and results in improved liver function and survival rates among patients with end-stage liver disease. The subgroup analysis stratified by liver background indicated that patients with ACLF benefit more from MSC therapy than patients with liver cirrhosis at most time points.


Assuntos
Insuficiência Hepática Crônica Agudizada , Doença Hepática Terminal , Células-Tronco Mesenquimais , Humanos , Insuficiência Hepática Crônica Agudizada/terapia , Medula Óssea , Cirrose Hepática/terapia
15.
Int Immunopharmacol ; 125(Pt A): 111134, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918086

RESUMO

BACKGROUND: Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have garnered considerable attention as prospective modalities of treatment for liver fibrosis (LF). The inhibition of hepatic stellate cell (HSC) activation underlies the anti-fibrotic effects of hUC-MSCs. However, the precise mechanism by which hUC-MSCs impede HSC activation remains unclarified. We aimed to elucidate the intrinsic mechanisms underlying the therapeutic effects of hUC-MSCs in LF patients. METHODS: Mice with liver cirrhosis induced by carbon tetrachloride (CCl4) were used as experimental models and administered hUC-MSCs via tail-vein injection. The alterations in inflammation and fibrosis were evaluated through histopathological examinations. RNA sequencing (RNA-seq) and bioinformatics analysis were then conducted to investigate the therapeutic mechanism of hUC-MSCs. Finally, an in-vitro experiment involving the co-cultivation of hUC-MSCs or hUC-MSC-derived exosomes (MSC-Exos) with LX2 cells was performed to validate the potential mechanism underlying the hepatoprotective effects of hUC-MSCs in LF patients. RESULTS: hUC-MSC therapy significantly improved liver function and alleviated LF in CCl4-induced mice. High-throughput RNA-Seq analysis identified 1142 differentially expressed genes that were potentially involved in mediating the therapeutic effects of hUC-MSCs. These genes play an important role in regulating the extracellular matrix. miRNA expression data (GSE151098) indicated that the miR-148a-5p level was downregulated in LF samples, but restored following hUC-MSC treatment. miR-148a-5p was delivered to LX2 cells by hUC-MSCs via the exosome pathway, and the upregulated expression of miR-148a-5p significantly suppressed the expression of the activated phenotype of LX2 cells. SLIT3 was identified within the pool of potential target genes regulated by miR-148a-5p. Furthermore, hUC-MSC administration upregulated the expression of miR-148a-5p, which played a crucial role in suppressing the expression of SLIT3, thereby palliating fibrosis. CONCLUSIONS: hUC-MSCs inhibit the activation of HSCs through the miR-148a-5p/SLIT3 pathway and are thus capable of alleviating LF.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Humanos , Camundongos , Animais , Estudos Prospectivos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/terapia , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Proteínas de Membrana/metabolismo
16.
Stem Cell Res Ther ; 13(1): 179, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505419

RESUMO

Mesenchymal stem cell (MSC) transplantation, as an alternative strategy to orthotopic liver transplantation, has been evaluated for treating end-stage liver disease. Although the therapeutic mechanism of MSC transplantation remains unclear, accumulating evidence has demonstrated that MSCs can regenerate tissues and self-renew to repair the liver through differentiation into hepatocyte-like cells, immune regulation, and anti-fibrotic mechanisms. Multiple clinical trials have confirmed that MSC transplantation restores liver function and alleviates liver damage. A sufficient number of MSCs must be home to the target tissues after administration for successful application. However, inefficient homing of MSCs after systemic administration is a major limitation in MSC therapy. Here, we review the mechanisms and clinical application status of MSCs in the treatment of liver disease and comprehensively summarize the molecular mechanisms of MSC homing, and various strategies for promoting MSC homing to improve the treatment of liver disease.


Assuntos
Hepatopatias , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Diferenciação Celular , Humanos , Cirrose Hepática/terapia , Hepatopatias/terapia
17.
Front Genet ; 13: 1004912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246593

RESUMO

Background: To determine effective biomarkers for the diagnosis of acute liver failure (ALF) and explore the characteristics of the immune cell infiltration of ALF. Methods: We analyzed the differentially expressed genes (DEGs) between ALF and control samples in GSE38941, GSE62029, GSE96851, GSE120652, and merged datasets. Co-expressed DEGs (co-DEGs) identified from the five datasets were analyzed for enrichment analysis. We further constructed a PPI network of co-DEGs using the STRING database. Then, we integrated the two kinds of machine-learning strategies to identify diagnostic biomarkers of top hub genes screened based on MCC and Degree methods. And the potential diagnostic performance of the biomarkers for ALF was estimated using the AUC values. Data from GSE14668, GSE74000, and GSE96851 databases was performed as external verification sets to validate the expression level of potential diagnostic biomarkers. Furthermore, we analyzed the difference in the protein level of diagnostic biomarkers between normal and ALF mice models. Finally, we used CIBERSORT to estimate relative infiltration levels of 22 immune cell subsets in ALF samples and further analyzed the relationships between the diagnostic biomarkers and infiltrated immune cells. Results: A total of 200 co-DEGs were screened. Enrichment analyses depicted that they are highly enriched in metabolism and matrix collagen production-associated processes. The top 28 hub genes were obtained by integrating MCC and Degree methods. Then, the collagen type IV alpha 2 chain (COL4A2) was regarded as the diagnostic biomarker and showed excellent specificity and sensitivity. COL4A2 also showed a statistically significant difference and excellent diagnostic effectiveness in the verification set. In addition, there was a significant upregulation in the COL4A2 protein level in ALF mice models compared with the normal group. CIBERSORT analysis showed that activated CD4 T cells, plasma cells, macrophages, and monocytes may be implicated in the progress of ALF. In addition, COL4A2 showed different degrees of correlation with immune cells. Conclusion: In conclusion, COL4A2 may be a diagnostic biomarker for ALF, and immune cell infiltration may have important implications for the occurrence and progression of ALF.

18.
Front Mol Biosci ; 9: 1010160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275632

RESUMO

Hepatitis B virus (HBV) infection remains the leading cause of liver fibrosis (LF) worldwide, especially in China. Identification of decisive diagnostic biomarkers for HBV-associated liver fibrosis (HBV-LF) is required to prevent chronic hepatitis B (CHB) from progressing to liver cancer and to more effectively select the best treatment strategy. We obtained 43 samples from CHB patients without LF and 81 samples from CHB patients with LF (GSE84044 dataset). Among these, 173 differentially expressed genes (DEGs) were identified. Functional analysis revealed that these DEGs predominantly participated in immune-, extracellular matrix-, and metabolism-related processes. Subsequently, we integrated four algorithms (LASSO regression, SVM-RFE, RF, and WGCNA) to determine diagnostic biomarkers for HBV-LF. These analyses and receive operating characteristic curves identified the genes for phosphatidic acid phosphatase type 2C (PPAP2C) and versican (VCAN) as potentially valuable diagnostic biomarkers for HBV-LF. Single-sample gene set enrichment analysis (ssGSEA) further confirmed the immune landscape of HBV-LF. The two diagnostic biomarkers also significantly correlated with infiltrating immune cells. The potential regulatory mechanisms of VCAN underlying the occurrence and development of HBV-LF were also analyzed. These collective findings implicate VCAN as a novel diagnostic biomarker for HBV-LF, and infiltration of immune cells may critically contribute to the occurrence and development of HBV-LF.

19.
Stem Cell Res Ther ; 13(1): 308, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841079

RESUMO

Liver fibrosis is a wound-healing process that occurs in response to severe injuries and is hallmarked by the excessive accumulation of extracellular matrix or scar tissues within the liver. Liver fibrosis can be either acute or chronic and is induced by a variety of hepatotoxic causes, including lipid deposition, drugs, viruses, and autoimmune reactions. In advanced fibrosis, liver cirrhosis develops, a condition for which there is no successful therapy other than liver transplantation. Although liver transplantation is still a viable option, numerous limitations limit its application, including a lack of donor organs, immune rejection, and postoperative complications. As a result, there is an immediate need for a different kind of therapeutic approach. Recent research has shown that the administration of mesenchymal stromal cells (MSCs) is an attractive treatment modality for repairing liver injury and enhancing liver regeneration. This is accomplished through the cell migration into liver sites, immunoregulation, hepatogenic differentiation, as well as paracrine mechanisms. MSCs can also release a huge variety of molecules into the extracellular environment. These molecules, which include extracellular vesicles, lipids, free nucleic acids, and soluble proteins, exert crucial roles in repairing damaged tissue. In this review, we summarize the characteristics of MSCs, representative clinical study data, and the potential mechanisms of MSCs-based strategies for attenuating liver cirrhosis. Additionally, we examine the processes that are involved in the MSCs-dependent modulation of the immune milieu in liver cirrhosis. As a result, our findings lend credence to the concept of developing a cell therapy treatment for liver cirrhosis that is premised on MSCs. MSCs can be used as a candidate therapeutic agent to lengthen the survival duration of patients with liver cirrhosis or possibly reverse the condition in the near future.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Cirrose Hepática/metabolismo , Cirrose Hepática/terapia , Regeneração Hepática , Células-Tronco Mesenquimais/metabolismo
20.
Oncogene ; 41(14): 2069-2078, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35177812

RESUMO

Genome-scale CRISPR-Cas9 screening technology is a powerful tool to systematically identify genes essential for cancer cell survival. Herein, TKOv3, a genome-scale CRISPR-Cas9 knock-out library, was screened in the gastric cancer (GC) cells, and relevant validation experiments were performed. We obtained 854 essential genes for the AGS cell line, and 184 were novel essential genes. After knocking down essential genes: SPC25, DHX37, ABCE1, SNRPB, TOP3A, RUVBL1, CIT, TACC3 and MTBP, cell viability and proliferation were significantly decreased. Then, we analysed the detected essential genes at different time points and proved more characteristic genes might appear with the extension of selection. After progressive selection using a series of open datasets, 41 essential genes were identified as potential drug targets. Among them, methyltransferase 1 (METTL1) was over expressed in GC tissues. High METTL1 expression was associated with poor prognosis among 3 of 6 GC cohorts. Furthermore, GC cells growth was significantly inhibited after the down-regulation of METTL1 in vitro and in vivo. Function analysis revealed that METTL1 might play a role in the cell cycle through AKT/STAT3 pathways. In conclusion, compared with existing genome-scale screenings, we obtained 184 novel essential genes. Among them, METTL1 was validated as a potential therapeutic target of GC.


Assuntos
Genes Essenciais , Neoplasias Gástricas , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Detecção Precoce de Câncer , Humanos , Neoplasias Gástricas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa