RESUMO
Interfaces, such as grain boundaries and phase boundaries in thermoelectric (TE) materials, play a crucial role in the carrier/phonon transport. Accurate control of the features of interfaces, including composition, crystalline nature, and thickness may give rise to a promising pathway to break the trade-off between phonon and carrier transport properties, which is essential to design high-performance TE materials. In this work, the amorphous polymer interface (API) layer is introduced to the p-type commercial Bi0.5Sb1.5Te3 (BST) TE material by the liquid-phase sintering process. Due to the larger mismatch in the acoustic impedance or phonon spectra between the amorphous polymer layer and the BST phase, the additional interfacial thermal resistance is introduced, which results in a large decrease in lattice thermal conductivity. It is found that the interfacial thermal resistance at the API is much higher than that of normal grain boundary and hetero interface reported in the literature. Conversely, taking advantage of the strong electron and phonon scattering, a large net get of ZT was achieved. A maximum ZT of â¼1.22 at 350 K was obtained in the BST/polyimide-0.5% sample, which is considerably greater than that of the commercial BST matrix (â¼0.99 at 350 K). Furthermore, the optimized BST/polymer sample also exhibited almost 20% enhancement in hardness compared with the pure BST sample. This work has opened a new window for designing high-performance TE composites, which may extend to other material systems.
RESUMO
Zintl phases typically exhibit low lattice thermal conductivity, which are extensively investigated as promising thermoelectric candidates. While the significance of Zintl anionic frameworks in electronic transport properties is widely recognized, their roles in thermal transport properties have often been overlooked. This study delves into KCdSb as a representative case, where the [CdSb4/4]- tetrahedrons not only impact charge transfer but also phonon transport. The phonon velocity and mean free path, are heavily influenced by the bonding distance and strength of the Zintl anions Cd and Sb, considering the three acoustic branches arising from their vibrations. Furthermore, the weakly bound Zintl cation K exhibits localized vibration behaviors, resulting in strong coupling between the high-lying acoustic branch and the low-lying optical branch, further impeding phonon diffusion. The calculations reveal that grain boundaries also contribute to the low lattice thermal conductivity of KCdSb through medium-frequency phonon scattering. These combined factors create a glass-like thermal transport behavior, which is advantageous for improving the thermoelectric merit of zT. Notably, a maximum zT of 0.6 is achieved for K0.84Na0.16CdSb at 712 K. The study offers both intrinsic and extrinsic strategies for developing high-efficiency thermoelectric Zintl materials with extremely low lattice thermal conductivity.
RESUMO
GeTe stands as a promising lead-free medium-temperature thermoelectric material that has garnered considerable attention in recent years. Suppressing carrier concentration by aliovalent doping in GeTe-based thermoelectrics is the most common optimization strategy due to the intrinsically high Ge vacancy concentration. However, it inevitably results in a significant deterioration of carrier mobility, which limits further improvement of the zT value. Thus, an effective Trojan doping strategy via CuScTe2 alloying is utilized to optimize carrier concentration without intensifying charge carrier scattering by increasing the solubility of Sc in the GeTe system. Because of the high doping efficiency of the Trojan doping strategy, optimized hole concentration and high mobility are obtained. Furthermore, CuScTe2 alloying leads to band convergence in GeTe, increasing the effective mass m* in (Ge0.84Sb0.06Te0.9)(CuScTe2)0.05 and thus significantly improving the Seebeck coefficient throughout the measured temperature range. Meanwhile, the achievement of the ultralow lattice thermal conductivity (κL â¼ 0.34 W m-1 K-1) at 623 K is attributed to dense point defects with mass/strain-field fluctuations. Ultimately, the (Ge0.84Sb0.06Te0.9)(CuScTe2)0.05 sample exhibits a desirable thermoelectric performance of zTmax â¼ 1.81 at 623 K and zTave â¼ 1.01 between 300 and 723 K. This study showcases an effective doping strategy for enhancing the thermoelectric properties of GeTe-based materials by decoupling phonon and carrier scattering.