Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
J Cell Mol Med ; 28(7): e18183, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506078

RESUMO

Mechanical stress is an internal force between various parts of an object that resists external factors and effects that cause an object to deform, and mechanical stress is essential for various tissues that are constantly subjected to mechanical loads to function normally. Integrins are a class of transmembrane heterodimeric glycoprotein receptors that are important target proteins for the action of mechanical stress stimuli on cells and can convert extracellular physical and mechanical signals into intracellular bioelectrical signals, thereby regulating osteogenesis and osteolysis. Integrins play a bidirectional regulatory role in bone metabolism. In this paper, relevant literature published in recent years is reviewed and summarized. The characteristics of integrins and mechanical stress are introduced, as well as the mechanisms underlying responses of integrin to mechanical stress stimulation. The paper focuses on integrin-mediated mechanical stress in different cells involved in bone metabolism and its associated signalling mechanisms. The purpose of this review is to provide a theoretical basis for the application of integrin-mediated mechanical stress to the field of bone tissue repair and regeneration.


Assuntos
Integrinas , Transdução de Sinais , Integrinas/metabolismo , Estresse Mecânico , Transdução de Sinais/fisiologia , Células Cultivadas
2.
Langmuir ; 40(11): 5753-5763, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38436581

RESUMO

With four nanoparticles as the nanomatrix, dinotefuran (DNF) as the template molecule, N-isopropylacrylamide as the functional monomer, trimethylolpropane and trimethacrylate as the cross-linker, four nanosurface molecularly imprinted polymer (MIP) bifunctional probes were prepared by microwave synthesis. It was found that palladium nanosurface MIP (Pd@MIP) not only recognized DNF but also had the strongest catalytic effect on the new nanogold indicator reaction of acrylic acid-HAuCl4, which was evaluated quickly with the slope procedure developed by us. The generated gold nanoparticles (AuNPs) not only possessed the resonance Rayleigh scattering (RRS) effect but also strong surface-enhanced Raman scattering (SERS) activity. The combination of Pd@MIP with DNF enhanced the catalytic effect by coupling the nanosurface electrons with π-electrons, thus enhancing both scattering signals. A new Pd@MIP nanoprobe catalytic-SERS/RRS dual-mode analytical platform was developed for the specific and sensitive detection of DNF. The linear ranges of the SERS and RRS methods were 0.075-0.75 and 0.1-0.75 nmol/L, and the limits of detection were 0.03 and 0.06 nmol/L, respectively. The standard deviations were 0.54-2.39%, and the recoveries were 93-105%.

3.
Analyst ; 149(11): 3236-3244, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38687011

RESUMO

In this work, a nanogold surface molecularly imprinted polymer spectral probe (AuNP@MIP) for selectively identifying ferrocyanide was prepared under microwave irradiation using nanogold as the core, ferrocyanide as the template ion, methacrylic acid as the monomer, and ethylene glycol dimethacrylate as the cross-linking agent. AuNP@MIP was found to produce a resonance Rayleigh scattering (RRS) peak at 370 nm. When potassium ferrocyanide (K4Fe(CN)6) was present, a AuNP@MIP-Fe(CN)6 complex was formed, producing RRS-energy transfer (RRS-ET). With an increase in ferrocyanide concentration within a certain range, the RRS intensity at 370 nm decreased linearly, and the detection range was 0.02-0.40 µmol L-1, with a detection limit as low as 0.006 µmol L-1 ferrocyanide. This new method has the advantages of simplicity, rapidity, and selectivity when applied for the determination of K4Fe(CN)6 in table salt.

4.
Analyst ; 149(8): 2374-2387, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38456248

RESUMO

A new coinage metal nanocluster surface molecularly imprinted polymethacrylic acid nanoprobe (NC@MIP) for the selective determination of 2,4,6-trichlorophenol (TCP) was prepared via microwave synthesis using 2,4,6-trichlorophenol as a template molecule, copper nanoclusters (CuNC) as a nanosubstrate, and methacrylic acid as a polymer monomer. It was found that the copper nanocluster MIP (CuNC@MIP) shows the strongest catalytic performance for the reduction of HAuCl4 by hydrazine hydrate for the on-site generation of gold nanoparticles (AuNPs) with the surface plasmon resonance (SPR) effects of resonance surface-enhanced Raman scattering (SERS) and resonance Rayleigh scattering (RRS) as well as absorption (Abs). When TCP was added, the CuNC@MIP nanoprobe and TCP-formed CuNC@MIP-TCP nanoenzyme with stronger catalytic activity generated more AuNPs, and the trimodal analytical signal was enhanced linearly. Therefore, a new SERS/RRS/Abs trimodal sensing platform for TCP was constructed, which was simple, rapid, sensitive, and selective. For each mode, the linear ranges were 0.0075-0.075, 0.010-0.10, and 0.010-0.10 nmol L-1, and the detection limits were 0.0010, 0.021, and 0.043 nmol L-1, respectively. The relative deviation of TCP in different water quality was 0.47%-2.5% and the recovery rate was 94.6%-108.6%.

5.
Analyst ; 149(4): 1179-1189, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38206348

RESUMO

Malachite green (MG) is highly toxic, persistent, and carcinogenic, and its widespread use is a danger to the ecosystem and a threat to public health and food safety, making it necessary to develop new sensitive multimode molecular spectroscopy methods. In this work, a new copper-based nanomaterial (CuNM) was prepared by a high-temperature roasting using a copper metal-organic framework (CuMOF) as precursor. The as-prepared CuNM was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), and BET surface area analysis. CuNM was found to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce the oxidation product TMBOX; however, subsequently, the MG aptamer (Apt) could be adsorbed on the CuNM surface by intermolecular interaction, which would inhibit the catalytic performance. After the addition of MG to be tested, the CuNM previously adsorbed by the Apt was transformed into its free state, thus restoring its catalytic activity. This new nanocatalytic indicator reaction could be monitored by surface-enhanced Raman scattering (SERS)/resonance Rayleigh scattering (RRS)/fluorescence (FL)/absorption (Abs) quadruple-mode methods. The SERS determination range was 0.004-0.4 nmol L-1 MG, with a limit of detection of 0.0032 nM. In this way, a rapid, stable, and sensitive method for the determination of MG residues in the environment was established.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Corantes de Rosanilina , Cobre , Nanopartículas Metálicas/química , Peróxido de Hidrogênio , Ecossistema , Análise Espectral Raman/métodos , Oligonucleotídeos
6.
Biomed Eng Online ; 23(1): 62, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918766

RESUMO

Diabetic retinopathy (DR) is an eye disease that causes blindness and vision loss in diabetic. Risk factors for DR include high blood glucose levels and some environmental factors. The pathogenesis is based on inflammation caused by interferon and other nuclear proteins. This review article provides an overview of DR and discusses the role of nuclear proteins in the pathogenesis of the disease. Some core proteins such as MAPK, transcription co-factors, transcription co-activators, and others are part of this review. In addition, some current advanced treatment resulting from the role of nuclear proteins will be analyzes, including epigenetic modifications, the use of methylation, acetylation, and histone modifications. Stem cell technology and the use of nanobiotechnology are proposed as promising approaches for a more effective treatment of DR.


Assuntos
Retinopatia Diabética , Proteínas Nucleares , Retinopatia Diabética/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Animais , Epigênese Genética
7.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769237

RESUMO

Liquid crystals (LCs) are a very important display material. However, the use of LC, especially LC-loaded nanoparticles, as a catalyst to amplify the analytical signal and coupled with specific aptamer (Apt) as a recognition element to construct a highly sensitive and selective three-mode molecular spectral assay is rarely reported. In this article, five LCs, such as cholesteryl benzoate (CB), were studied by molecular spectroscopy to indicate the liquid crystal nanoparticles in the system, and highly catalytic and stable CB loaded-nanosilver (CB@AgNPs) sol was prepared. The slope procedure was used to study the catalysis of the five LCs and CB@AgNPs on the new indicator reaction between AgNO3 and sodium formate (Fo) to produce silver nanoparticles (AgNPs) with a strong surface plasmon resonance absorption (Abs) peak at 450 nm, a resonance Rayleigh scattering (RRS) peak at 370 nm and a surface enhanced Raman scattering (SERS) peak at 1618 cm-1 in the presence of molecular probes. By coupling the new CB@AgNPs catalytic indicator reaction with the Apt reaction, a new CB@AgNPs catalytic amplification-SERS/RRS/Abs trimode biosensoring platform was constructed for detecting inorganic pollutants, such as Pb2+, Cd2+, Hg2+ and As3+.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Nanopartículas Metálicas , Chumbo , Nanopartículas Metálicas/química , Prata/química , Oligonucleotídeos , Catálise , Análise Espectral Raman/métodos
8.
Analyst ; 147(11): 2369-2377, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35535968

RESUMO

A neodymium metal-organic framework (MOFNd) was prepared using 1H-pyrazole-3,5-dicarboxylic acid (H3pdc) and 2-pyrazinecarboxylic acid as ligands. Through the addition of HAuCl4 as a precursor and NaBH4 as a reducing agent, a new MOFNd-loaded nanogold (AuNPs) (Au@MOFNd) nanosol with good stability and high catalytic activity was conveniently prepared via a solvothermal-reduction method and characterized. It was found that the indicator reaction of reducing HAuCl4 by Na2SO3 to generate AuNPs was slow. Au@MOFNd strongly catalyzes this nanoreaction, and the produced AuNPs exhibit a strong resonance Rayleigh scattering (RRS) peak at 370 nm, and a strong surface-enhanced Raman scattering (SERS) peak at 1617 cm-1 with the addition of the molecular probe Victoria blue 4R (VB4r). A novel SERS/RRS di-mode quantitative analysis method for glyphosate (GLY) was established by coupling this new Au@MOFNd catalytic indicator reaction with the aptamer (Apt) reaction of GLY, with SERS and RRS detection limits of 0.02 nM and 0.3 nM, respectively. It has been applied to the analysis of soil samples with a recovery rate of 93.0%-106.5% and precision of 2.2%-4.1%, and the results were satisfactory.


Assuntos
Ouro , Nanopartículas Metálicas , Catálise , Glicina/análogos & derivados , Oligonucleotídeos , Análise Espectral Raman/métodos , Glifosato
9.
Mikrochim Acta ; 190(1): 4, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469128

RESUMO

A new Fe metal-organic framework-loaded liquid crystal 4-octoxybenzoic acid (FeMOF@OCTB) nanosol was synthesized using 1,3,5-phthalic acid, ferrous sulfate, and OCTB as precursors. The FeMOF@OCTB exhibits good stability and strong catalytic effect for the polyethylene glycol 400-Ag (I) indicator reaction, which was evaluated rapidly by the slope procedure. The generated silver nanoparticles have a strong surface-enhanced Raman scattering (SERS) effect and a surface plasmon resonance absorption (Abs) peak at 420 nm. This new bimodal nanosilver indicator reaction was coupled with the isocarbophos (IPS)-aptamer (Apt) reaction. A FeMOF@OCTB nanocatalytic amplified-SERS/Abs bimodal Apt assay for IPS was established. The SERS assay can detect IPS in the concentration range 0.02-1.2 nM, with a detection limit of 0.010 nM. It has been applied to the determination of IPS in rice samples. The relative standard deviation was 4.4-5.8%, and the recovery was 97.7-104%. An Ag nanosol plasmon SERS/Abs dimode aptamer assay was fabricated for trace isocarbophos, based on highly catalysis MOF@OCTB nanoenzyme.


Assuntos
Nanopartículas Metálicas , Prata , Prata/química , Nanopartículas Metálicas/química , Catálise
10.
Molecules ; 27(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36558139

RESUMO

Lung cancer is one of the 10 most common cancers in the world, which seriously affects the normal life and health of patients. According to the investigation report, the 3-year survival rate of patients with lung cancer is less than 20%. Heredity, the environment, and long-term smoking or secondhand smoke greatly promote the development and progress of the disease. The mechanisms of action of the occurrence and development of lung cancer have not been fully clarified. As a new type of gas signal molecule, hydrogen sulfide (H2S) has received great attention for its physiological and pathological roles in mammalian cells. It has been found that H2S is widely involved in the regulation of the respiratory system and digestive system, and plays an important role in the occurrence and development of lung cancer. H2S has the characteristics of dissolving in water and passing through the cell membrane, and is widely expressed in body tissues, which determines the possibility of its participation in the occurrence of lung cancer. Both endogenous and exogenous H2S may be involved in the inhibition of lung cancer cells by regulating mitochondrial energy metabolism, mitochondrial DNA integrity, and phosphoinositide 3-kinase/protein kinase B co-pathway hypoxia-inducible factor-1α (HIF-1α). This article reviews and discusses the molecular mechanism of H2S in the development of lung cancer, and provides novel insights for the prevention and targeted therapy of lung cancer.


Assuntos
Sulfeto de Hidrogênio , Neoplasias Pulmonares , Animais , Humanos , Sulfeto de Hidrogênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Metabolismo Energético , Mamíferos/metabolismo
11.
Mikrochim Acta ; 188(5): 175, 2021 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-33893886

RESUMO

Bisphenol A (BPA), as a typical endocrine disruptor, poses a serious threat to human health. Therefore, it is urgent to establish a rapid, sensitive, and simple method for the determination of BPA. In this paper, based on the aptamer-mediated single-atom Fe carbon dot catalyst (SAFe) catalyzing the HAuCl4-ethylene glycol (EG) nanoreaction, a new SERS/RRS di-mode detection method for BPA was established. The results show that SAFe exhibits a strong catalytic effect on the HAuCl4-EG nanoreaction, which could generate purple gold nanoparticles (AuNPs) with resonance Rayleigh scattering (RRS) signals and surface-enhanced Raman scattering (SERS) effects. After the addition of BPA aptamer (Apt), it could encapsulate SAFe through intermolecular interaction, thus inhibiting its catalytic action, resulting in the reduction of AuNPs generated and the decrease of RRS and SERS signals of the system. With the addition of BPA, Apt was specifically combined with BPA, and SAFe was re-released to restore the catalytic ability; the generated AuNPs increased. As a result of this RRS and SERS signals of the system recovered, and their increment was linear with the concentration of BPA. Thus, the quantification of 0.1-4.0 nM (RRS) and 0.1-12.0 nM (SERS) BPA was realized, and the detection limits were 0.08 nM and 0.03 nM, respectively. At the same time, we used molecular spectroscopy and electron microscopy to study the SAFe-HAuCl4-ethylene glycol indicator reaction, and proposed a reasonable SAFe catalytic reaction mechanism. Based on Apt-mediated SAFe catalysis gold nanoreaction amplification, a SERS/RRS di-mode analytical platform was established for targets such as BPA.


Assuntos
Aptâmeros de Nucleotídeos/química , Compostos Benzidrílicos/análise , Disruptores Endócrinos/análise , Poluentes Ambientais/análise , Nanopartículas Metálicas/química , Fenóis/análise , Pontos Quânticos/química , Compostos Benzidrílicos/química , Carbono/química , Catálise , Cloretos/química , Disruptores Endócrinos/química , Poluentes Ambientais/química , Etilenoglicol/química , Ouro/química , Compostos de Ouro/química , Ferro/química , Limite de Detecção , Fenóis/química , Plásticos/análise , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
12.
Molecules ; 26(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641474

RESUMO

Using citric acid (CA) and ethylenediamine (EDA) as precursors, stable nitrogen-doped carbon dots (CD) nanosols were prepared by microwave procedure and characterized in detail. It was found that CDNs catalyze ethanol (Et)-HAuCl4 to generate gold nanoparticles (AuNPs), which have strong surface plasmon resonance, Rayleigh scattering, (RRS) and a surface plasmon resonance (SPR) absorption (Abs) effect at 370 nm and 575 nm, respectively. Compled the new catalytic amplification indicator reaction with the specific As3+ aptamer reaction, a new RRS/Abs dual-mode aptamer sensor for the assay of trace As3+ was developed, based on the RRS/Abs signals increasing linearly with As3+ increasing in the ranges of 5-250 nmol/L and 50-250 nmol/L, whose detection limits were 0.8 nmol/L and 3.4 nmol/L As3+, respectively. This analytical method has the advantages of high selectivity, simplicity, and rapidity, and it has been successfully applied to the detection of practical samples.

13.
Analyst ; 144(17): 5090-5097, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31360936

RESUMO

Co-doped carbon dots are new multifunctional carbon nanomaterials. Their fast preparation and new analytical applications such as in continuous detection and resonance Rayleigh scattering (RRS) probes are of interest to people. Herein, the N/Au co-doped carbon dots (CDN/Au) were prepared quickly by a microwave synthesis method using fructose as the carbon source and urea and HAuCl4 as dopants, and it exhibited an excellent RRS effect at 555 nm. Based on both silicate (SiO32-) and phosphate (PO43-) reacting with ammonium molybdate to form silicomolybdate heteropoly acid (SiMo) and phosphomolybdate heteropoly acid (PMo), PMo decomposed by the addition of citric acid, and SiMo/PMo combined with CDN/Au to show good RRS analytical properties, and a new strategy was developed to detect SiO32- and PO43- by the CDN/Au probes continuously. With the increase of SiO32- (PO43-), SiMo (PMo) reacted with CDN/Au probes to form more big particles which resulted in the RRS intensity enhancement at 555 nm, and had a good linear relationship with the SiO32- (PO43-) concentration in the range of 1.11 µg L-1-19.98 µg L-1, with detection limits of 0.3 µg L-1 SiO32- and 0.3 µg L-1 PO43-. Accordingly, a new RRS method was established for continuous detection of SiO32- and PO43- using CDN/Au as the probe.

14.
Mikrochim Acta ; 186(5): 323, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31049706

RESUMO

A fluorometric clenbuterol immunoassay is described that uses S- and N-co-doped carbon quantum dots as the fluorescent probe. Strongly fluorescent S/N-doped carbon quantum dots (S/N-CDs) were synthesized by hydrothermal method using fructose as the carbon precursor and L-cysteine as S/N sources. The S/N-CDs were characterized by transmission electron microscopy, energy dispersive spectroscopy and Fourier transform infrared spectroscopy (FTIR). Under 350 nm photoexcitation, they display strong purple fluorescence with an emission peak at 405 nm. In pH 4.0 solution, the amino groups (confirmed by FTIR) on the carbon quantum dots were coupled to clenbuterol antibody (Ab) by amine-amine coupling reaction to quench the fluorescence. If clenbuterol (Clen) is added, it binds to the Ab to generate a stable Ab-Clen immunocomplex and free S/N-CD. This causes the fluorescence of nanoprobe to be restored. The fluorescence of the system increases linearly in the 0.07-1.7 ng·mL-1 Clen concentration range. The probe of type S/N4-CD displays the best sensitivity. The detection limit is 23 pg·mL-1. Graphical abstract Schematic presentation of clenbuterol fluorometric immunoassay using sulfur and nitrogen doped carbon quantum dots.


Assuntos
Carbono/química , Clembuterol/análise , Corantes Fluorescentes/química , Imunoensaio/métodos , Nitrogênio/química , Pontos Quânticos/química , Enxofre/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Prata/química , Espectrometria de Fluorescência/métodos
15.
Mikrochim Acta ; 186(9): 638, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31440836

RESUMO

Carbon dots doped with N/Ce, N/Eu and N/Tb were prepared by a microwave based hydrothermal technique. The fluorescence of the N/Ce co-doped carbon dots (CDN/Ce) is strongest. They have excitation/emission maxima at 340/441 nm. CDN/Ce was characterized by scanning electron microscopy, infrared and fluorescence spectroscopy. On addition of the nucleic acid aptamer (Apt) against arsenic(III) in pH 7 solution, the blue fluorescence of the doped carbon dots is partially quenched due to electrostatic interaction. On addition of As(III), it will bind to the aptamer, and the carbon dots are released. Hence, fluorescence becomes gradually restored. In addition, the resonance Rayleigh scattering signal (measured at 340 nm) is reduced. This dual-mode assay works in the 0.5-5.8 µg·L-1 As(III) concentration range and has a 0.2 µg·L-1 detection limit. Graphical abstract Schematic representation of fluorometric and resonance Rayleigh scattering dual mode analysis of As3+ by using coupled Apt and CDN/Ce probes. Apt: Aptamer. CD: Carbon dot. Flu: Fluorescence. RRS: Resonance Rayleigh scattering.

16.
Sensors (Basel) ; 19(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641921

RESUMO

Simple and facile electrochemical sensors for nitrite detection were fabricated by directly depositing ferrocenoyl cysteine conjugates Fc[CO-Cys(Trt)-OMe]2 [Fc(Cys)2] or Fc[CO-Glu-Cys-Gly-OH] [Fc-ECG] on screen-printed electrodes (SPEs). The modified carbon electrodes were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Results indicated that Fc-ECG/SPE sensor showed enhanced current response and a lower overpotential than Fc(Cys)2/SPE sensor for nitrite detection. Optimal operating conditions were estimated for nitrite detection by DPV. The concentration of nitrite showed a good linear relationship with the current response in the range of 1.0⁻50 µmol·L-1 and with 0.3 µmol·L-1 as the concentration for limit of detection. There were no interferences from most common ions. The development of this electrochemical sensor was used for nitrite detection in pickled juice with a R.S.D. lower than 2.1% and average recovery lower than 101.5%, which indicated that disposable electrochemical sensor system can be applied for rapid and precise nitrite detection in foods.

17.
Luminescence ; 33(6): 1033-1039, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29900660

RESUMO

The nanogold reaction between HAuCl4 and trisodium citrate (TCA) proceeded very slowly at 60°C in a water bath. The as-prepared graphene oxide nanoribbons (GONRs) exhibited strong catalysis during the reaction to form gold nanoparticles (Au NPs) and appeared as a strong surface-enhanced Raman scattering (SERS) peak at 1616 cm-1 in the presence of the molecular probe Victoria blue 4R (VB4r). With increase in GONR concentration, the SERS peak increased due to increased formation of Au NPs. Upon addition of dimethylglyoxime (DMG) ligand, which was adsorbed onto the GONR surface to inhibit GONR catalysis, the SERS peak decreased. When Ni2+ was added, a coordination reaction between DMG and Ni2+ took place to form stable complexes of [Ni (DMG)2 ]2+ and the release of free GONR catalyst that resulted in the SERS peak increasing linearly. A SERS quantitative analysis method for Ni2+ was therefore established, with a linear range of 0.07-2.8 µM, and a detection limit of 0.036 µM Ni2+ .


Assuntos
Ouro/química , Grafite/química , Nanoestruturas/química , Níquel/análise , Óxidos/química , Oximas/química , Catálise , Análise Espectral Raman , Propriedades de Superfície
18.
Luminescence ; 33(1): 131-137, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28799722

RESUMO

Using silver nanoparticles (AgNPs) as the nanocatalyst, l-cysteine rapidly reduced HAuCl4 to make a stable gold nanoparticle sol (Ag/AuNP) that had a high surface-enhanced Raman scattering (SERS) activity in the presence of Victoria blue 4R (VB4r) molecular probes. Under the selected conditions, chondroitin sulfate (Chs) reacted with the VB4r probes to form associated complexes that caused the SERS effect to decrease to 1618 cm-1 . The decreased SERS intensity was linear to the Chs concentration in the range 3.1-500 ng/ml, with a detection limit of 1.0 ng/ml Chs. Accordingly, we established a simple and sensitive SERS quantitative analysis method to determine Chs in real samples, with a relative standard deviation of 1.47-3.16% and a recovery rate of 97.6-104.2%.


Assuntos
Sulfatos de Condroitina/análise , Ouro/química , Nanopartículas Metálicas/química , Sondas Moleculares/química , Corantes de Rosanilina/química , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
19.
Luminescence ; 33(6): 1113-1121, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30014561

RESUMO

The as-prepared graphene oxide (GO) exhibited a strong catalytic effect on reduction of HAuCl4 by trisodium citrate to form gold nanoplasmons (AuNPs) with a strong surface-enhanced Raman scattering (SERS) effect at 1615 cm-1 in the presence of molecular probe Victoria blue 4R (VB4r). SERS intensity increased with nanocatalyst GO concentration due to the formation of more AuNP substrates. The aptamer (Apt) of Hg2+ can bind to GO to form Apt-GO complexes, which can strongly inhibit nanocatalysis. When target Hg2+ is present, the formed stable Hg2+ -Apt complexes are separated from the GO surface, which leads to GO catalysis recovery. The enhanced SERS signal was linear to Hg2+ concentration in the range 0.25-10 nmol/L, with a detection limit of 0.08 nmol/L Hg2+ . Thus, a new gold nanoplasmon molecular spectral analysis platform was established for detecting Hg2+ , based on Apt regulation of GO nanocatalysis.


Assuntos
Aptâmeros de Nucleotídeos/química , Ouro/química , Grafite/química , Mercúrio/análise , Nanopartículas Metálicas/química , Óxidos/química , Catálise , Análise Espectral Raman , Propriedades de Superfície
20.
Mikrochim Acta ; 185(3): 177, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29594714

RESUMO

The authors report that graphene oxide nanoribbons exert a strong catalytic effect on the reduction of HAuCl4 by H2O2 to form gold nanoparticles which display nanoplasmonic surface enhanced Raman scattering (SERS) activity, Rayleigh scattering and absorption. If an aptamer against Pb(II) is present in solution, it will bind to the graphene oxide nanoribbons and thereby inhibit their catalytic activity. Upon addition of Pb(II), it will bind to the aptamer to form stable complexes and release free graphene oxide nanoribbon. These cause the surface enhanced Raman scattering intensity at 1615 cm-1 to increase in the presence of the molecular probe Victoria Blue B. The SERS signal increases linearly in the 0.002-0.075 µmol·L-1 Pb(II) concentration range, and the detection limit is 0.7 nmol·L-1. Toner samples were spiked and then analyzed for Pb(II) by this method. Relative standard deviations are between 6.2% and 12.2%, and recoveries range from of 86.7%-106.7%. Graphic abstract Based on Pb(II) binds to the aptamer to form stable G-quadruplex and release free graphene oxide nanoribbon, a sensitive and selective surface enhanced Raman scattering method was developed for detection of 0.002-0.075 µmol·L-1 Pb(II) by using the molecular probe Victoria Blue B.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa