Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Cell ; 185(17): 3138-3152.e20, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35926506

RESUMO

Oakleaf butterflies in the genus Kallima have a polymorphic wing phenotype, enabling these insects to masquerade as dead leaves. This iconic example of protective resemblance provides an interesting evolutionary paradigm that can be employed to study biodiversity. We integrated multi-omic data analyses and functional validation to infer the evolutionary history of Kallima species and investigate the genetic basis of their variable leaf wing patterns. We find that Kallima butterflies diversified in the eastern Himalayas and dispersed to East and Southeast Asia. Moreover, we find that leaf wing polymorphism is controlled by the wing patterning gene cortex, which has been maintained in Kallima by long-term balancing selection. Our results provide macroevolutionary and microevolutionary insights into a model species originating from a mountain ecosystem.


Assuntos
Borboletas , Animais , Biodiversidade , Evolução Biológica , Borboletas/genética , Ecossistema , Fenótipo , Asas de Animais
2.
J Cell Biochem ; 125(2): e30512, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38098251

RESUMO

Circular RNA (circRNA) is a class of RNA with the 5' and 3' ends connected covalently to form a closed loop structure and characterized by high stability, conserved sequences and tissue specificity, which is caused by special reverse splicing methods. Currently, it has become a hot spot for research. With the discovery of its powerful regulatory functions and roles, the molecular mechanisms and future value of circRNA in participating in and regulating biological and pathological processes are becoming increasingly apparent. Among them is the increasing prevalence of cardiovascular diseases (CVDs). Many studies have elucidated that circRNA plays a crucial role in the development and progression of CVDs. Therefore, circRNA shows its advantages and brilliant expectations in the field of CVDs. In this review, we describe the biogenesis, bioinformatics detection and function of circRNA and discuss the role of circRNA and its effects on CVDs, including atherosclerosis, myocardial infarction, cardiac hypertrophy and heart failure, myocardial fibrosis, cardiac senescence, pulmonary hypertension, and diabetic cardiomyopathy by different mechanisms. That shows circRNA advantages and brilliant expectations in the field of CVDs.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , RNA Circular/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Motivação , RNA/genética
3.
Nitric Oxide ; 144: 29-39, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307376

RESUMO

This review aims to analyze the developmental trajectory of hydrogen sulfide (H2S) donors over the past three decades and explore the historical background, research hotspots, and emerging trends in related fields from a temporal perspective. A total of 5092 literature articles on H2S donors were retrieved from the Web of Science Core Collection (WoSCC), encompassing 1303 journals, 20638 authors, 10992 institutions, and 459 countries and regions. Utilizing CiteSpace as a bibliometric tool, historical features, evolving active topics, and emerging trends in the field of H2S donors were identified. Over the past 30 years, the field of H2S donors has remained in a prominent stage. This article discusses both inorganic and organic types of H2S donors, including NaHS and Na2S, GYY4137, AP39, and AP123, as well as briefly outlines research and applications of H2S donors in nanotechnology, advanced materials, composite materials, nanostructures, and optical properties. Mechanistically, the review outlines how H2S donors regulate cellular signal transduction, anti-inflammatory responses, neuroprotection, and other pathways within the organism by modulating protein S-sulfhydration, antioxidant effects, and interactions with metal proteins. In terms of applications, the review summarizes the extensive use of H2S donors in biomedical research, encompassing cardiovascular, neurological, anti-inflammatory, and anti-cancer characteristics, as well as their potential applications in the treatment of metabolic diseases. Finally, challenges and limitations faced by H2S donor research are discussed, and potential future research directions are proposed.


Assuntos
Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Anti-Inflamatórios , Pulmão/metabolismo
4.
Nitric Oxide ; 142: 47-57, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049061

RESUMO

BACKGROUND: Endothelial-mesenchymal transition (EndMT) induced by low shear stress plays an important role in the development of atherosclerosis. However, little is known about the correlation between hydrogen sulfide (H2S), a protective gaseous mediator in atherosclerosis and the process of EndMT. METHODS: We constructed a stable low-shear-stress-induced(2 dyn/cm2) EndMT model, acombined with the pretreatment method of hydrogen sulfide slow release agent(GYY4137). The level of MEST was detected in the common carotid artery of ApoE-/- mice with local carotid artery ligation. The effect of MEST on atherosclerosis development in vivo was verified using ApoE-/- mice were given tail-vein injection of endothelial-specific overexpressed and knock-down MEST adeno-associated virus (AAV). RESULTS: These findings confirmed that MEST is up-regulated in low-shear-stress-induced EndMT and atherosclerosis. In vivo experiments showed that MEST gene overexpression significantly promoted EndMT and aggravated the development of atherosclerotic plaques and MEST gene knockdown significantly inhibited EndMT and delayed the process of atherosclerosis. In vitro, H2S inhibits the expression of MEST and EndMT induced by low shear stress and inhibits EndMT induced by MEST overexpression. Knockdown of NFIL3 inhibit the up regulation of MEST and EndMT induced by low shear stress in HUVECs. CHIP-qPCR assay and Luciferase Reporter assay confirmed that NFIL3 binds to MEST DNA, increases its transcription and H2S inhibits the binding of NFIL3 and MEST DNA, weakening NFIL3's transcriptional promotion of MEST. Mechanistically, H2S increased the sulfhydrylation level of NFIL3, an important upstream transcription factors of MEST. In part, transcription factor NFIL3 restrain its binding to MEST DNA by sulfhydration. CONCLUSIONS: H2S negatively regulate the expression of MEST by sulfhydrylation of NFIL3, thereby inhibiting low-shear-stress-induced EndMT and atherosclerosis.


Assuntos
Aterosclerose , Sulfeto de Hidrogênio , Camundongos , Animais , Humanos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Transição Endotélio-Mesênquima , Aterosclerose/genética , Aterosclerose/metabolismo , Endotélio/metabolismo , DNA/metabolismo , Apolipoproteínas E/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transição Epitelial-Mesenquimal
5.
Mol Cell Biochem ; 479(4): 779-791, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37178375

RESUMO

Cardiovascular disease (CVD) has a high incidence and low cure rate worldwide, and atherosclerosis (AS) is the main factor inducing cardiovascular disease, of which lipid deposition in the vessel wall is the main marker of AS. Currently, although statins can be used to lower lipids and low-density lipoprotein (LDL) in AS, the cure rate for AS remains low. Therefore, there is an urgent need to develop new therapeutic approaches, and stem cells are now widely studied, while stem cells are a class of cell types that always maintain the ability to differentiate and can differentiate to form other cells and tissues, and stem cell transplantation techniques have shown efficacy in the treatment of other diseases. With the establishment of cellular therapies and continued research in stem cell technology, stem cells are also being used to address the problem of AS. In this paper, we focus on recent research advances in stem cell therapy for AS and briefly summarize the relevant factors that induce the formation of AS. We mainly discuss the efficacy and application prospects of mesenchymal stem cells (MSCs) for the treatment of AS, in addition to the partial role and potential of exosomes in the treatment of AS. Further, provide new ideas for the clinical application of stem cells.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Exossomos , Transplante de Células-Tronco Mesenquimais , Humanos , Doenças Cardiovasculares/metabolismo , Transplante de Células-Tronco , Aterosclerose/terapia , Aterosclerose/metabolismo , Exossomos/metabolismo , Terapia Baseada em Transplante de Células e Tecidos
6.
Mol Cell Biochem ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652215

RESUMO

Angiopoietin-1 (Ang-1) and Vascular Endothelial Growth Factor (VEGF) are central regulators of angiogenesis and are often inactivated in various cardiovascular diseases. VEGF forms complexes with ETS transcription factor family and exerts its action by downregulating multiple genes. Among the target genes of the VEGF-ETS complex, there are a significant number encoding key angiogenic regulators. Phosphorylation of the VEGF-ETS complex releases transcriptional repression on these angiogenic regulators, thereby promoting their expression. Ang-1 interacts with TEK, and this phosphorylation release can be modulated by the Ang-1-TEK signaling pathway. The Ang-1-TEK pathway participates in the transcriptional activation of VEGF genes. In summary, these elements constitute the Ang-1-TEK-VEGF signaling pathway. Additionally, Ang-1 is activated under hypoxic and inflammatory conditions, leading to an upregulation in the expression of TEK. Elevated TEK levels result in the formation of the VEGF-ETS complex, which, in turn, downregulates the expression of numerous angiogenic genes. Hence, the Ang-1-dependent transcriptional repression is indirect. Reduced expression of many target genes can lead to aberrant angiogenesis. A significant overlap exists between the target genes regulated by Ang-1-TEK-VEGF and those under the control of the Ang-1-TEK-TSP-1 signaling pathway. Mechanistically, this can be explained by the replacement of the VEGF-ETS complex with the TSP-1 transcriptional repression complex at the ETS sites on target gene promoters. Furthermore, VEGF possesses non-classical functions unrelated to ETS and DNA binding. Its supportive role in TSP-1 formation may be exerted through the VEGF-CRL5-VHL-HIF-1α-VH032-TGF-ß-TSP-1 axis. This review assesses the regulatory mechanisms of the Ang-1-TEK-VEGF signaling pathway and explores its significant overlap with the Ang-1-TEK-TSP-1 signaling pathway.

7.
J Assist Reprod Genet ; 41(3): 767-779, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372883

RESUMO

Coenzyme Q10 (CoQ10) is a natural component widely present in the inner membrane of mitochondria. CoQ10 functions as a key cofactor for adenosine triphosphate (ATP) production and exhibits antioxidant properties in vivo. Mitochondria, as the energy supply center of cells, play a crucial role in germ cell maturation and embryonic development, a complicated process of cell division and cellular differentiation that transforms from a single cell (zygote) to a multicellular organism (fetus). Here, we discuss the effects of CoQ10 on oocyte maturation and the important role of CoQ10 in the growth of various organs during different stages of fetal development. These allowed us to gain a deeper understanding of the pathophysiology of embryonic development and the potential role of CoQ10 in improving fertility quality. They also provide a reference for further developing its application in clinical treatments.


Assuntos
Antioxidantes , Ubiquinona , Ubiquinona/análogos & derivados , Humanos , Ubiquinona/farmacologia , Antioxidantes/farmacologia , Mitocôndrias/genética , Desenvolvimento Embrionário/genética
8.
Indian J Microbiol ; 64(1): 82-91, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468732

RESUMO

Children obesity is a serious public health problem drawing much attention around the world. Recent research indicated that gut microbiota plays a vital role in children obesity, and disturbed gut microbiota is a prominent characteristic of obese children. Diet and exercise are efficient intervention for weight loss in obesity children, however, how the gut microbiota is modulated which remains largely unknown. To characterize the feature of gut microbiota in obese children and explore the effect of dietary and exercise on gut microbiota in simple obese children, 107 healthy children and 86 obese children were recruited, and among of the obese children 39 received the dietary-exercise combined weight loss intervention (DEI). The gut microbiota composition was detected by the 16S amplicon sequencing method. The gut microbiota composition was significantly different between obese children and the healthy cohort, and DEI significantly reduced the body weight and ameliorated the gut microbiota dysbiosis. After DEI, the abundance of the Akkermansia muciniphila was increased, while the abundance of the Sutterella genus was decreased in simple obese children. Our results may provide theoretical reference for future personalized obesity interventions based on gut microbiota. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01088-3.

9.
Mol Cell Biochem ; 478(4): 755-765, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36083511

RESUMO

Cardiovascular diseases, such as coronary artery disease and stroke, are the main threats to human health worldwide. Atherosclerosis, a chronic inflammatory disorder, plays a role as an initiator of all of the above-mentioned diseases. Cell therapy for diseases has attracted widespread attention. Mesenchymal stem cells (MSCs) are a type of stem cell that still exist in adults and have the characteristics of self-renewal ability, pluripotent differentiation potential, immunomodulation, tissue regeneration, anti-inflammation and low immunogenicity. In light of the properties of MSCs, some researchers have begun to target MSCs to create a possible way to alleviate atherosclerosis. Most of these studies are focused on MSC transplantation, injecting MSCs to modulate macrophages, the key inflammatory cell in atherosclerosis plaque. According to recent studies, researchers found that endothelial-to-mesenchymal transition (EndMT) has something to do with atherosclerosis development. A new cell type MSC might also appear during the EndMT process. In this article, we summarize the characteristics of MSCs, the latest progress of MSC research and its application prospects, and in view of the process of EndMT occurring in atherosclerosis, we propose some new ideas for the treatment of atherosclerosis by targeting MSCs.


Assuntos
Aterosclerose , Células Progenitoras Endoteliais , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Placa Aterosclerótica , Humanos , Aterosclerose/terapia , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo
10.
Biochem Soc Trans ; 50(2): 951-963, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35383841

RESUMO

Long non-coding RNAs (lncRNAs) are a class of non-coding RNA with a length greater than 200 nt. It has a mRNA-like structure, formed by splicing after transcription, and contains a polyA tail and a promoter, of whom promoter plays a role by binding transcription factors. LncRNAs' sequences are low in conservation, and other species can only find a handful of the same lncRNAs as humans, and there are different splicing ways during the differentiation of identical species, with spatiotemporal expression specificity. With developing high-throughput sequencing and bioinformatics, found that more and more lncRNAs associated with nervous system disease. This article deals with the regulation of certain lncRNAs in the nervous system disease, by mean of to understand its mechanism of action, and the pathogenesis of some neurological diseases have a fresh understanding, deposit a foundation for resulting research and clinical treatment of disease.


Assuntos
MicroRNAs , Doenças do Sistema Nervoso , RNA Longo não Codificante , Biologia Computacional/métodos , Redes Reguladoras de Genes , Humanos , MicroRNAs/metabolismo , Doenças do Sistema Nervoso/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo
11.
Plant Cell ; 31(5): 1077-1093, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30923230

RESUMO

Brassinosteroids (BRs) are steroid hormones that play essential roles in plant growth and development. We previously cloned qGL3, a major quantitative trait locus regulating grain length in rice (Oryza sativa). The O. sativa japonica var N411 has extra-large grains compared with the O. sativa indica var 9311, and the recessive qgl3 allele from N411 contributes positively to grain length. qGL3 encodes a putative protein phosphatase with Kelch-like repeat domains, an ortholog of Arabidopsis (Arabidopsis thaliana) brassinosteroid-insensitive1 SUPPRESSOR1 (BSU1). BSU1 positively regulates BR signaling, while overexpression of qGL3 induced BR loss-of-function phenotypes. Both qGL3N411 and qGL39311 physically interact with the rice glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinase 3 (OsGSK3), an ortholog of Arabidopsis BR INSENSITIVE2 (BIN2). qGL39311 dephosphorylates OsGSK3, but qGL3N411 lacks this activity. Knocking out OsGSK3 enhances BR signaling and induces nuclear localization of O. sativa BRASSINAZOLE RESISTANT1 (OsBZR1). Unlike the dephosphorylation of BIN2 (which leads to protein degradation) in Arabidopsis, qGL3 dephosphorylates and stabilizes OsGSK3 in rice. These results demonstrate that qGL3 suppresses BR signaling by regulating the phosphorylation and stability of OsGSK3, which modulates OsBZR1 phosphorylation and subcellular distribution. Our study clarifies the role of qGL3 in the regulation of grain length and provides insight into BR signaling, including the differences between rice and Arabidopsis.


Assuntos
Brassinosteroides/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Mutação com Perda de Função , Oryza/enzimologia , Oryza/fisiologia , Fosforilação , Proteínas de Plantas/genética
12.
Nitric Oxide ; 127: 18-25, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839994

RESUMO

Hydrogen sulfide (H2S) is the third gaseous signaling molecule discovered in the body after NO and CO and plays an important organismal protective role in various diseases. Within adipose tissue, related catalytic enzymes (cystathionine-ß-synthetase, cystathionine-γ-lyase, and 3-mercaptopyruvate transsulfuration enzyme) can produce and release endogenous H2S. Atherosclerosis (As) is a pathological change in arterial vessels that is closely related to abnormal glucose and lipid metabolism and a chronic inflammatory response. Previous studies have shown that H2S can act on the cardiovascular system, exerting effects such as improving disorders of glycolipid metabolism, alleviating insulin resistance, protecting the function of vascular endothelial cells, inhibiting vascular smooth muscle cell proliferation and migration, regulating vascular tone, inhibiting the inflammatory response, and antagonizing the occurrence and development of As.


Assuntos
Aterosclerose , Sulfeto de Hidrogênio , Tecido Adiposo/metabolismo , Aterosclerose/patologia , Cistationina gama-Liase/metabolismo , Células Endoteliais/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia
13.
Mol Cell Biochem ; 477(1): 255-265, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34687394

RESUMO

Diabetic cardiomyopathy (DCM) is a cardiovascular complication that tends to occur in patients with diabetes, obesity, or insulin resistance, with a higher late mortality rate. Sustained hyperglycemia, increased free fatty acids, or insulin resistance induces metabolic disorders in cardiac tissues and cells, leading to myocardial fibrosis, left ventricular hypertrophy, diastolic and/or systolic dysfunction, and finally develop into congestive heart failure. The close connection between all signaling pathways and the complex pathogenesis of DCM cause difficulties in finding effective targets for the treatment of DCM. It reported that hydrogen sulfide (H2S) could regulate cell energy substrate metabolism, reduce insulin resistance, protect cardiomyocytes, and improve myocardial function by acting on related key proteins such as differentiation cluster 36 (CD36) and glucose transporter 4 (GLUT4). In this article, the relative mechanisms of H2S in alleviating metabolic disorders of DCM were reviewed, and how H2S can better prevent and treat DCM in clinical practice will be discussed.


Assuntos
Cardiomiopatias Diabéticas/metabolismo , Metabolismo Energético , Sulfeto de Hidrogênio/metabolismo , Resistência à Insulina , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Humanos
14.
PLoS Comput Biol ; 17(11): e1009582, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762642

RESUMO

Isogenic cells cultured together show heterogeneity in their proliferation rate. To determine the differences between fast and slow-proliferating cells, we developed a method to sort cells by proliferation rate, and performed RNA-seq on slow and fast proliferating subpopulations of pluripotent mouse embryonic stem cells (mESCs) and mouse fibroblasts. We found that slowly proliferating mESCs have a more naïve pluripotent character. We identified an evolutionarily conserved proliferation-correlated transcriptomic signature that is common to all eukaryotes: fast cells have higher expression of genes for protein synthesis and protein degradation. This signature accurately predicted growth rate in yeast and cancer cells, and identified lineage-specific proliferation dynamics during development, using C. elegans scRNA-seq data. In contrast, sorting by mitochondria membrane potential revealed a highly cell-type specific mitochondria-state related transcriptome. mESCs with hyperpolarized mitochondria are fast proliferating, while the opposite is true for fibroblasts. The mitochondrial electron transport chain inhibitor antimycin affected slow and fast subpopulations differently. While a major transcriptional-signature associated with cell-to-cell heterogeneity in proliferation is conserved, the metabolic and energetic dependency of cell proliferation is cell-type specific.


Assuntos
Linhagem da Célula , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma
15.
J Hum Nutr Diet ; 34(6): 926-934, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33788349

RESUMO

BACKGROUND: Malnutrition is highly prevalent in critically ill patients. The modified Nutrition Risk in the Critically ill (mNUTRIC) score has been introduced to evaluate the nutritional risk of patients in an intensive care unit (ICU). The mNUTRIC score is a predictive factor of mortality for patients in a medical or mixed ICU, whereas the relationship between mNUTRIC and prognosis of patients in a cardiothoracic surgery recovery unit (CSRU) is unclear and related researches are limited. METHODS: We conducted this retrospective cohort study to explore the value of mNUTRIC score in CSRU patients. We identified totally 4059 patients from the Multiparameter Intelligent Monitoring in Intensive Care III (MIMIC III) database. RESULTS: The optimal cut-off value of mNUTRIC score was 4 and a total of 1498 (36.9%) patients were considered to be at high nutritional risk (mNUTRIC ≥ 4). A multivariate logistic regression model indicated that patients at high nutritional risk have higher hospital mortality compared to those at low nutritional risk (odds ratio = 2.49, 95% confidence interval (CI) = 1.32-4.70, p = 0.005]. Furthermore, a Cox regression model was established adjusted for age, white blood cell and body mass index. The Kaplan-Meier curve indicated that patients at high nutritional risk have poorer 365-days [hazard ratio (HR) = 1.76, 95% CI = 1.30-2.37, p < 0.001] and 1000-days (HR = 2.30, 95% CI = 1.87-2.83, p < 0.001) overall survival. CONCLUSIONS: The mNUTRIC score could not only predict hospital mortality, but also be an independent prognostic factor for long-term survival in CSRU patients. More well-designed clinical trials are needed to verify and update our findings.


Assuntos
Desnutrição , Avaliação Nutricional , Estado Terminal , Humanos , Unidades de Terapia Intensiva , Desnutrição/diagnóstico , Estado Nutricional , Prognóstico , Estudos Retrospectivos , Medição de Risco
16.
J Cell Physiol ; 235(3): 2102-2112, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31338841

RESUMO

The therapeutic effect of metformin (Met) on atherosclerosis was studied here. Effects of methionine and Met on the induction of inflammatory response and H2 S expression in peritoneal macrophages were evaluated. Enzyme-linked immunosorbent assay, immunohistochemistry assay, western blot, and quantitative reverse transcription polymerase chain reaction were conducted to observe the levels of cystathionine γ-lyase (CSE), DNA methyltransferases 1 (DNMT1), DNMT3a, DNMT3b, tumor necrosis factor (TNF- α), interleukin 1b (IL-1ß), and hydrogen sulfide (H 2 S). Luciferase and bisulfite sequencing assays were also utilized to evaluate the CSE promoter activity as well as the methylation status of CSE in transfected cells. Methionine significantly elevated Hcy, TNF-a, H 2 S, and IL-1ß expression while decreasing the level of CSE in C57BL/6 mice. In contrary, co-treatment with Methionine and Met reduced the detrimental effect of Methionine. Homocysteine (Hcy) decreased H 2 S expression while promoting the synthesis of IL-1ß and TNF-α in THP-1 and raw264.7 cells. Treatment of THP-1 and raw264.7 cells with methionine and Met reduced the activity of methionine in dose dependently. Moreover, Hcy increased the expression of DNMT and elevated the level of methylation in the CSE promoter, whereas the co-treatment with methionine and Met attenuated the effects of Hcy. Methionine significantly decreased plasma level of CSE while increasing the severity of inflammatory responses and plasma level of Hcy, which in turn suppressed H 2 S synthesis and enhanced DNA hypermethylation of CSE promoter to promote the pathogenesis of atherosclerosis. In contrary, co-treatment with methionine and Met reduced the detrimental effect of methionine.


Assuntos
Aterosclerose/tratamento farmacológico , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Metformina/farmacologia , Animais , Aterosclerose/metabolismo , Linhagem Celular , Metilação de DNA/efeitos dos fármacos , Interleucina-1beta/metabolismo , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
17.
Biochem Biophys Res Commun ; 527(2): 545-552, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32423800

RESUMO

Angiogenesis is a core hallmark of advanced cancers, especially in lung adenocarcinoma (LUAD). However, the underlying functions and mechanisms of lncRNAs in tumor angiogenesis remain largely unknown. Here we found that linc00665 depletion could markedly depressed proliferation and capillary tube formation of HUVECs in vitro. Mechanistically, linc00665 directly interacted with YB-1 protein, enhanced its stability through inhibiting ubiquitination-dependent proteolysis and stimulated its nuclear translocation in LUAD cells. The accumulated nuclear YB-1 activated expression of ANGPT4, ANGPTL3 and VEGFA by binding to their promoters, contributing to tumor-related angiogenesis in vitro and in vivo. Collectively, we conclude that linc00665 induces tumor-related angiogenesis in LUAD by directly interacting with YB-1 and activating YB-1-ANGPT4/ANGPTL3/VEGFA axis, which provides promising anti-angiogenic targets for cancer therapy.


Assuntos
Adenocarcinoma de Pulmão/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neovascularização Patológica/genética , RNA Longo não Codificante/genética , Proteína 1 de Ligação a Y-Box/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , RNA Longo não Codificante/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo
18.
Cardiovasc Drugs Ther ; 34(1): 113-121, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32090295

RESUMO

Hydrogen sulfide (H2S), a novel gaseous signaling molecule, is a vital physiological signal in mammals. H2S protects the cardiovascular system via modulation of vasodilation, vascular remodeling, and inhibition of vascular calcification, and also has anti-atherosclerosis properties. Autophagy is a lysosomal-mediated intracellular degradation mechanism for excessive or abnormal proteins and lipids. The contribution of autophagy to normal and disease-state cell physiology is extremely complicated. Autophagy acts as a double-edged sword in the cardiovascular system. It can defend against damage to cells caused by environmental changes and it can also induce active cell death under certain conditions. In recent years, accumulating evidence indicates that H2S can up- or downregulate autophagy in many pathological processes, thereby switching from a harmful to a beneficial role. In this review, we summarize progress on understanding the mechanism by which H2S regulates autophagy in cardiovascular disease. We also discuss a H2S switch phenomenon that regulates autophagy and provides protection in cardiovascular diseases.


Assuntos
Autofagia , Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Sulfeto de Hidrogênio/metabolismo , Animais , Apoptose , Autofagia/efeitos dos fármacos , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/patologia , Sistema Cardiovascular/fisiopatologia , Humanos , Sulfeto de Hidrogênio/uso terapêutico , Transdução de Sinais
19.
Med Sci Monit ; 26: e920351, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32108133

RESUMO

BACKGROUND This study aimed to use bioinformatics analysis to compare data from tissue microarrays from patients with lung adenocarcinoma (LUAD) and normal lung tissue, and human lung adenocarcinoma cells with normal lung epithelial cells in vitro to investigate the role of synaptotagmin 12 (SYT12) gene expression in LUAD. MATERIAL AND METHODS Human lung adenocarcinoma cell lines (A549, SPC-A-1, H1299, H1975, and PC9) and the normal HBE cell line were compared, and tumor xenografts were developed in mice. The Cancer Genome Atlas (TCGA) tissue microarray data were used to compare SYT12 expression and overall survival (OS). The in vivo and in vitro effects of down-regulation and upregulation of SYT12 were studied using short-interfering RNA (si-RNA) and overexpression plasmids, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analysis, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and Western blot investigated the molecular mechanisms of SYT12 expression in LUAD. RESULTS SYT12 expression was increased in tissues from patients with LUAD from TCGA and was associated with advanced tumor stage and reduced prognosis. Knockdown of SYT12 suppressed the proliferation and migration of LUAD cells, and upregulation of SYT12 increased the proliferation and migration of LUAD cells in vitro. Phosphorylation of PIK3R3 activated the PI3K/AKT/mTOR pathway. In the mouse xenograft model, expression of SYT12 increased the volume and weight of the xenograft tumors. CONCLUSIONS Bioinformatics analysis, human LUAD cells, and mouse xenograft studies showed that SYT12 acted as a possible oncogene by phosphorylation of PIK3R3 to activate the PI3K/AKT/mTOR signaling pathway.


Assuntos
Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Sinaptotagminas/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sinaptotagminas/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
20.
J Clin Lab Anal ; 34(1): e23028, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31489719

RESUMO

AIM: The current study aimed to examine miR-145's contribution to thoracic aortic dissection (AD) development by modulating the biological functions of vascular smooth muscle cells (VSMCs). METHODS: The concentration of circulating miR-145 was determined in patients with AD and healthy controls using quantitative polymerase chain reaction (qPCR). Aortic specimens were obtained from both individuals with Stanford type A AD undergoing surgical treatment and deceased organ donors (serving as controls) whose causes of death were nonvascular diseases. Then, qPCR and fluorescence in situ hybridization were applied to assess miR-145 amounts and location, respectively. Furthermore, qPCR and immunoblot were employed to determine SMAD3 (the target gene of miR-145, involved in the TGF-ß pathway) amounts at the gene and protein levels, respectively. Moreover, in vitro transfection of VSMCs with miR-145 mimics or inhibitors was conducted. Finally, the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Transwell assay and flow cytometry were employed for detecting VSMC proliferation, migration, and apoptosis, respectively. RESULTS: The amounts of miR-145 in plasma and aortic specimens were markedly reduced in the AD group in comparison with control values (P < .05). miR-145 was mostly located in VSMCs. Proliferation and apoptosis of VSMCs were significantly induced in vitro by the downregulation of miR-145. Also, miR-145 modulated SMAD3 expression. CONCLUSIONS: miR-145 was found to be downregulated in patients with AD, which induced the proliferation, migration, and apoptosis of VSMCs by targeting SMAD3. This suggested the involvement of miR-145 in the pathogenesis of AD.


Assuntos
Dissecção Aórtica/genética , Apoptose/genética , Movimento Celular/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Idoso , Sequência de Bases , Proliferação de Células/genética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Proteína Smad3/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa