Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2404861, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073293

RESUMO

Spiral inorganic perovskite nanowires (NWs) possess unique morphologies and properties that allow them highly attractive for applications in optoelectronic and catalytic fields. In popular solution-based synthesis methodology, however, challenges persist in simultaneously achieving precise and facile control over morphological twisting and fantastic carrier lifetimes. Here, a cooperative strategy of concurrently employing selective etching and ligand engineering is applied to facilitate the formation of spiral CsPbBr3 perovskite NWs with an ultralong carrier lifetime of ≈2 µs. Specifically, a novel amine of 1-(p-tolyl)ethanamine is introduced to functionalize as both a selective etchant and the source of forming an effective ligand to passivate the exposed facets, favoring the structural twisting and the enhancement of carrier lifetimes. The twisting behaviors are dependent on the etch ratios, which are essentially associated with the densities of grain boundaries and dislocations in the NWs. The ultralong carrier lifetime and long-term stability of the spiral NWs open up new possibilities for all-inorganic perovskites in optoelectronic and photocatalytic fields, while the cooperative synthesis strategy paves the way for exploring complex spiral structures with tunable morphology and functionality.

2.
Angew Chem Int Ed Engl ; 58(4): 996-1001, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30426625

RESUMO

Precisely carving of multi-shelled manganese-cobalt oxide hollow dodecahedra (Co/Mn-HD) with shell number up to three is achieved by a controlled calcination of the Mn-doped zeolitic imidazolate framework ZIF-67 precursor (Co/Mn-ZIF). The unique multi-shelled and polycrystalline structure not only provides a very large electrochemically active surface area (EASA), but also enhances the structural stability of the material. The residual C and N in the final structures might aid stability and increase their conductivity. When used in alkaline rechargeable battery, the triple-shelled Co/Mn-HD exhibits high electrochemical performance, reversible capacity (331.94 mAh g-1 at 1 Ag-1 ), rate performance (88 % of the capacity can be retained with a 20-fold increase in current density), and cycling stability (96 % retention over 2000 cycles).

3.
J Phys Chem Lett ; 14(10): 2533-2541, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36877191

RESUMO

Enantiomeric control of intrinsically chiral inorganic nanocrystals (NCs), despite being reported in few systems over the past years, still remains a challenging task. Here, we succeeded in the enantioselective synthesis of intrinsically chiral perovskite-like CsCuCl3 NCs in the presence of chiral amino acids using an antisolvent crystallization method at room temperature. The d-/l-ligand-induced enantiomeric NCs showed the relevant characteristic chiroptical responses. Interestingly, under the addition of each d- or l-form of the ligand, the chiroptical activity of the NCs could be tailored through facilely tuning the Cs/Cu feed ratios and amino acid types. The polarity of such amino acids and their coordination configurations with the NC structures contributed to the distinct behaviors. The ability to manipulate the ligand-induced enantioselective strategy would open pathways for the controllable synthesis of intrinsically chiral inorganics and enable a better understanding of the origins of precursor-ligand-associated chiral discrimination and crystallization phenomena.

4.
J Phys Chem Lett ; 14(23): 5447-5455, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37285220

RESUMO

Advances in hollow engineering of metal-organic frameworks (MOFs) have enabled a variety of applications in catalysts, sensors, and batteries, but the hollow derivatives are often limited to hydroxides, oxides, selenides, and sulfides with the presence of additional elements from the environment. Here we have successfully synthesized hollow metallic Co@Co cages through a facile two-step strategy. Interestingly, the Co@Co(C) cages with a small amount of residual carbon show excellent catalytic performance due to the abundant exposed active sites and fast charge transfer. During the hydrogen evolution reaction, the overpotential of Co@Co(C) is as low as ∼54 mV at the current density of 10 mA cm-2, which is close to that of ∼38 mV for the Pt/C electrodes. The two-step synthesis strategy opens up opportunities for increasing the number of catalytic active sites and rates of charge/mass transfer while pushing the limits of materials utilization beyond that achieved in existing MOF-based nanostructures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa