Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nature ; 583(7815): 286-289, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380510

RESUMO

The current outbreak of coronavirus disease-2019 (COVID-19) poses unprecedented challenges to global health1. The new coronavirus responsible for this outbreak-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-shares high sequence identity to SARS-CoV and a bat coronavirus, RaTG132. Although bats may be the reservoir host for a variety of coronaviruses3,4, it remains unknown whether SARS-CoV-2 has additional host species. Here we show that a coronavirus, which we name pangolin-CoV, isolated from a Malayan pangolin has 100%, 98.6%, 97.8% and 90.7% amino acid identity with SARS-CoV-2 in the E, M, N and S proteins, respectively. In particular, the receptor-binding domain of the S protein of pangolin-CoV is almost identical to that of SARS-CoV-2, with one difference in a noncritical amino acid. Our comparative genomic analysis suggests that SARS-CoV-2 may have originated in the recombination of a virus similar to pangolin-CoV with one similar to RaTG13. Pangolin-CoV was detected in 17 out of the 25 Malayan pangolins that we analysed. Infected pangolins showed clinical signs and histological changes, and circulating antibodies against pangolin-CoV reacted with the S protein of SARS-CoV-2. The isolation of a coronavirus from pangolins that is closely related to SARS-CoV-2 suggests that these animals have the potential to act as an intermediate host of SARS-CoV-2. This newly identified coronavirus from pangolins-the most-trafficked mammal in the illegal wildlife trade-could represent a future threat to public health if wildlife trade is not effectively controlled.


Assuntos
Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Eutérios/virologia , Evolução Molecular , Genoma Viral/genética , Homologia de Sequência do Ácido Nucleico , Animais , Betacoronavirus/classificação , COVID-19 , China , Quirópteros/virologia , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Proteínas M de Coronavírus , Proteínas do Nucleocapsídeo de Coronavírus , Reservatórios de Doenças/virologia , Genômica , Especificidade de Hospedeiro , Humanos , Pulmão/patologia , Pulmão/virologia , Malásia , Proteínas do Nucleocapsídeo/genética , Pandemias , Fosfoproteínas , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Reação em Cadeia da Polimerase , Recombinação Genética , SARS-CoV-2 , Alinhamento de Sequência , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética , Zoonoses/transmissão , Zoonoses/virologia
2.
Opt Express ; 31(13): 22001-22011, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381284

RESUMO

The equalization plays a pivotal role in modern high-speed optical wire-line transmission. Taking advantage of the digital signal processing architecture, the deep neural network (DNN) is introduced to realize the feedback-free signaling, which has no processing speed ceiling due to the timing constraint on the feedback path. To save the hardware resource of a DNN equalizer, a parallel decision DNN is proposed in this paper. By replacing the soft-max decision layer with hard decision layer, multi-symbol can be processed within one neural network. The neuron increment during parallelization is only linear with the layer count, rather than the neuron count in the case of duplication. The simulation results show that the optimized new architecture has competitive performance with the traditional 2-tap decision feedback equalizer architecture with 15-tap feed forward equalizer at a 28GBd, or even 56GBd, four-level pulse amplitude modulation signal with 30dB loss. And the training convergency of the proposed equalizer is much faster than its traditional counterpart. An adaptive mechanism of the network parameter based on forward error correction is also studied.

4.
Acta Pharmacol Sin ; 43(4): 840-849, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34267346

RESUMO

Luteolin is a flavonoid in a variety of fruits, vegetables, and herbs, which has shown anti-inflammatory, antioxidant, and anti-cancer neuroprotective activities. In this study, we investigated the potential beneficial effects of luteolin on memory deficits and neuroinflammation in a triple-transgenic mouse model of Alzheimer's disease (AD) (3 × Tg-AD). The mice were treated with luteolin (20, 40 mg · kg-1 · d-1, ip) for 3 weeks. We showed that luteolin treatment dose-dependently improved spatial learning, ameliorated memory deficits in 3 × Tg-AD mice, accompanied by inhibiting astrocyte overactivation (GFAP) and neuroinflammation (TNF-α, IL-1ß, IL-6, NO, COX-2, and iNOS protein), and decreasing the expression of endoplasmic reticulum (ER) stress markers GRP78 and IRE1α in brain tissues. In rat C6 glioma cells, treatment with luteolin (1, 10 µM) dose-dependently inhibited LPS-induced cell proliferation, excessive release of inflammatory cytokines, and increase of ER stress marker GRP78. In conclusion, luteolin is an effective agent in the treatment of learning and memory deficits in 3 × Tg-AD mice, which may be attributable to the inhibition of ER stress in astrocytes and subsequent neuroinflammation. These results provide the experimental basis for further research and development of luteolin as a therapeutic agent for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/tratamento farmacológico , Animais , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Endorribonucleases/farmacologia , Endorribonucleases/uso terapêutico , Luteolina/farmacologia , Luteolina/uso terapêutico , Camundongos , Camundongos Transgênicos , Doenças Neuroinflamatórias , Proteínas Serina-Treonina Quinases , Ratos
5.
Inflamm Res ; 70(7): 789-797, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34165588

RESUMO

OBJECTIVE: Osteoporosis is affecting the health of postmenopausal women in the world. In case of that, we explored whether FK-506 could ameliorate osteoporosis by inhibiting the activated CaN/NFAT pathway during oxidative stress. METHODS: First, the castrated rat model is constructed through the bilateral ovariectomy. Hologic Discovery (S/N 80347) dual-energy X-ray absorptiometry assessed bone mineral density (BMD) implemented at left femur of rats. Next, hematoxylin-eosin (H&E) staining observed and calculated the changes of bone trabecular, mean trabecular plate separation (Tb.Sp), mean trabecular plate thickness (Tb.Th), and bone volume fraction (BV/TV). Then, CCK-8 assay, TUNEL assay, ALP kit and alizarin red staining detected the viability, apoptosis, alkaline phosphatase (ALP) activity, and capacity of mineralization respectively. At last, commercially available kits detected the levels of ROS and SOD in transfected MC3T3-E1 cells and bone tissues, and Western blot analysis detected proteins related to apoptosis and CaN/NFAT pathway. RESULTS: FK-506 increased the BMD and changes of bone trabecular in female castrated rats. FK-506 inhibited the oxidative stress and apoptosis by suppressing the activated CaN/NFAT pathway. Low dose of FK-506 improved the viability, ALP activity, and mineralization capacity. What's more, it suppressed the apoptosis of H2O2-induced MC3T3-E1 cells, which was deteriorated by the high dose of FK-506. Briefly, low dose of FK-506 inhibited the oxidative stress by suppressing the activated CaN/NFAT pathway, while high dose of that further inhibited the oxidative stress by suppressing the CaN/NFAT pathway. CONCLUSION: FK-506 ameliorates osteoporosis resulted from osteoblastic apoptosis which caused by suppressing the activated CaN/NFAT pathway during oxidative stress.


Assuntos
Imunossupressores/uso terapêutico , Osteoporose/tratamento farmacológico , Tacrolimo/uso terapêutico , Fosfatase Alcalina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Calcineurina/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fêmur/anatomia & histologia , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Imunossupressores/farmacologia , Camundongos , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoporose/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Tacrolimo/farmacologia , Tíbia/anatomia & histologia , Tíbia/efeitos dos fármacos , Tíbia/metabolismo
6.
Biochem Genet ; 59(2): 475-490, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33123835

RESUMO

The aim of the present study was to determine the function of microRNA (miR)-125b-5p in lumbar disc degeneration (LDD). Nucleus pulposus (NP) cells were stimulated with 10 ng/ml IL-1ß for 24 h to establish an LDD model. Reverse transcription-quantitative PCR was used to assess miR-125b-5p levels in human lumbar degenerative NP samples and IL-1ß-treated NP cells. An interaction between miR-125b-5p and TP53-regulated inhibitor of apoptosis 1 (TRIAP1) was revealed by TargetScan 7.1 and dual-luciferase reporter assay. Protein levels of pro-inflammatory factors were determined using ELISA. Cell viability and apoptosis were evaluated by MTT and flow cytometry analysis, respectively. miR-125b-5p was markedly upregulated in both human lumbar degenerative NP specimens and IL-1ß-treated NP cells. TRIAP1, which directly targets miR-125b-5p, was markedly downregulated in human lumbar degenerative NP specimens and IL-1ß-treated NP cells. The levels of TNF-α and IL-6 were inhibited in IL-1ß-treated NP cells transfected with miR-125b-5p inhibitor. Moreover, miR-125b-5p inhibitor increased NP cell viability, prevented apoptosis and repressed the apoptotic peptidase activating factor 1/caspase 9 pathway in IL-1ß-treated NP cells. Thus, the present findings suggested that miR-125b-5p could regulate LDD by adjusting NP cell apoptosis and inflammatory responses via TRIAP1.


Assuntos
Apoptose , Interleucina-1beta/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/metabolismo , Núcleo Pulposo/metabolismo , Células Cultivadas , Humanos , Inflamação/metabolismo , Inflamação/patologia , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/patologia
7.
J Am Soc Nephrol ; 31(6): 1282-1295, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32444356

RESUMO

BACKGROUND: Antiglomerular basement membrane (anti-GBM) disease is associated with HLA-DRB1*1501 (the major predisposing genetic factor in the disease), with α3127-148 as a nephritogenic T and B cell epitope. Although the cause of disease remains unclear, the association of infections with anti-GBM disease has been long suspected. METHODS: To investigate whether microbes might activate autoreactive T and B lymphocytes via molecular mimicry in anti-GBM disease, we used bioinformatic tools, including BLAST, SYFPEITHI, and ABCpred, for peptide searching and epitope prediction. We used sera from patients with anti-GBM disease to assess peptides recognized by antibodies, and immunized WKY rats and a humanized mouse model (HLA-DR15 transgenic mice) with each of the peptide candidates to assess pathogenicity. RESULTS: On the basis of the critical motif, the bioinformatic approach identified 36 microbial peptides that mimic human α3127-148. Circulating antibodies in sera from patients with anti-GBM recognized nine of them. One peptide, B7, derived from Actinomyces species, induced proteinuria, linear IgG deposition on the GBM, and crescent formation when injected into WKY rats. The antibodies to B7 also targeted human and rat α3127-148. B7 induced T cell activation from human α3127-148-immunized rats. T cell responses to B7 were detected in rats immunized by Actinomyces lysate proteins or recombinant proteins. We confirmed B7's pathogenicity in HLA-DR15 transgenic mice that developed kidney injury similar to that observed in α3135-145-immunized mice. CONCLUSIONS: Sera from patients with anti-GBM disease recognized microbial peptides identified through a bioinformatic approach, and a peptide from Actinomyces induced experimental anti-GBM GN by T and B cell crossreactivity. These studies demonstrate that anti-GBM disease may be initiated by immunization with a microbial peptide.


Assuntos
Actinomyces/imunologia , Doença Antimembrana Basal Glomerular/etiologia , Proteínas de Bactérias/imunologia , Animais , Doença Antimembrana Basal Glomerular/imunologia , Antígenos B7/imunologia , Colágeno Tipo IV/imunologia , Subtipos Sorológicos de HLA-DR/fisiologia , Humanos , Ativação Linfocitária , Camundongos , Peptídeos/imunologia , Ratos , Ratos Endogâmicos WKY , Linfócitos T/imunologia
8.
Pharm Dev Technol ; 26(1): 21-29, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33070673

RESUMO

Multidrug resistance (MDR) is a serious challenge in chemotherapy and also a major threat to breast cancer treatment. As an intracellular energy factory, mitochondria provide energy for drug efflux and are deeply involved in multidrug resistance. Mitochondrial targeted delivery of doxorubicin can overcome multidrug resistance by disrupting mitochondrial function. By incorporating a reactive oxygen species (ROS)-responsive hydrophobic group into the backbone structure of hyaluronic acid - a natural ligand for the highly expressed CD44 receptor on tumor surfaces, a novel ROS-responsive and CD44-targeting nano-carriers was constructed. In this study, mitochondria-targeted triphenylphosphine modified-doxorubicin (TPP-DOX) and amphipathic ROS-responsive hyaluronic acid derivatives (HA-PBPE) were synthesized and confirmed by 1H NMR. The nanocarriers TPP-DOX @ HA-PBPE was prepared in a regular shape and particle size of approximately 200 nm. Compared to free DOX, its antitumor activity in vitro and tumor passive targeting in vivo has been enhanced. The ROS-responsive TPP-DOX@HA-PBPE nanocarriers system provide a promising strategy for the reverse of MDR and efficient delivery of doxorubicin derivatives into drug-resistant cancer cells.


Assuntos
Antineoplásicos/metabolismo , Neoplasias da Mama/metabolismo , Doxorrubicina/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Nanopartículas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Resistência a Múltiplos Medicamentos/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Nanopartículas/administração & dosagem , Nanopartículas/química , Espécies Reativas de Oxigênio/química
9.
Angew Chem Int Ed Engl ; 60(49): 25878-25883, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585471

RESUMO

The conformational distribution and mutual interconversion of thermally activated delayed fluorescence (TADF) emitters significantly affect the exciton utilization. However, their influence on the photophysics in amorphous film states is still not known due to the lack of a suitable quantitative analysis method. Herein, we used temperature-dependent time-resolved photoluminescence spectroscopy to quantitatively measure the relative populations of the conformations of a TADF emitter for the first time. We further propose a new concept of "self-doping" for realizing high-efficiency nondoped OLEDs. Interestingly, this "compositionally" pure film actually behaves as a film with a dopant (quasi-equatorial form) in a matrix (quasi-axial form). The concentration-induced quenching that may occur at high concentrations is thus expected to be effectively relieved. The "self-doping" OLED prepared with the newly developed TADF emitter TP2P-PXZ as a neat emitting layer realizes a high maximum external quantum efficiency of 25.4 % and neglectable efficiency roll-off.

10.
J Neuroinflammation ; 17(1): 62, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066456

RESUMO

BACKGROUND: A sustained inflammatory response following spinal cord injury (SCI) contributes to neuronal damage, inhibiting functional recovery. Macrophages, the major participants in the inflammatory response, transform into foamy macrophages after phagocytosing myelin debris, subsequently releasing inflammatory factors and amplifying the secondary injury. Here, we assessed the effect of macrophage scavenger receptor 1 (MSR1) in phagocytosis of myelin debris after SCI and explained its possible mechanism. METHODS: The SCI model was employed to determine the critical role of MSR1 in phagocytosis of myelin debris in vivo. The potential functions and mechanisms of MSR1 were explored using qPCR, western blotting, and immunofluorescence after treating macrophages and RAW264.7 with myelin debris in vitro. RESULTS: In this study, we found improved recovery from traumatic SCI in MSR1-knockout mice over that in MSR1 wild-type mice. Furthermore, MSR1 promoted the phagocytosis of myelin debris and the formation of foamy macrophage, leading to pro-inflammatory polarization in vitro and in vivo. Mechanistically, in the presence of myelin debris, MSR1-mediated NF-κB signaling pathway contributed to the release of inflammatory mediators and subsequently the apoptosis of neurons. CONCLUSIONS: Our study elucidates a previously unrecognized role of MSR1 in the pathophysiology of SCI and suggests that its inhibition may be a new treatment strategy for this traumatic condition.


Assuntos
Apoptose/fisiologia , Macrófagos/metabolismo , Neurônios/metabolismo , Receptores Depuradores Classe A/deficiência , Traumatismos da Medula Espinal/metabolismo , Animais , Células Cultivadas , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/patologia , Células RAW 264.7 , Receptores Depuradores Classe A/genética , Traumatismos da Medula Espinal/patologia
11.
Biomacromolecules ; 21(2): 444-453, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31851512

RESUMO

Self-assembled peptide nanofibers have been widely studied in cancer nanotherapeutics with their excellent biocompatibility and low toxicity of degradation products, showing the significant potential in inhibiting tumor progression. However, poor solubility prevents direct intravenous administration of nanofibers. Although water-soluble peptide precursors have been formed via the method of phosphorylation for intravenous administration, their opportunities for broad in vivo application are limited by the weak capacity of encapsulating drugs. Herein, we designed a novel restructured reduced glutathione (GSH)-responsive drug delivery system encapsulating doxorubicin for systemic administration, which achieved the intracellular restructuration from three-dimensional micelles into one-dimensional nanofibers. After a long blood circulation, micelles endocytosed by tumor cells could degrade in response to high GSH levels, achieving more release and accumulation of doxorubicin at desired sites. Further, the synergistic chemotherapy effects of self-assembled nanofibers were confirmed in both in vitro and in vivo experiments.


Assuntos
Doxorrubicina/administração & dosagem , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Glutationa/metabolismo , Nanofibras/química , Células A549 , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Glutationa/sangue , Células Endoteliais da Veia Umbilical Humana , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos Endogâmicos BALB C , Micelas , Peptídeos/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Cell Int ; 19: 335, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31857793

RESUMO

BACKGROUND: The high prevalence of alternative splicing among genes implies the importance of genomic complexity in regulating normal physiological processes and diseases such as gastric cancer (GC). The standard form of stem cell marker CD44 (CD44S) and its alternatives with additional exons are reported to play important roles in multiple types of tumors, but the regulation mechanism of CD44 alternative splicing is not fully understood. METHODS: Here the expression of hnRNPK was analyzed among the Cancer Genome Atlas (TCGA) cohort of GC. The function of hnRNPK in GC cells was analyzed and its downstream targeted gene was identified by chromatin immunoprecipitation and dual luciferase report assay. Finally, effect of hnRNPK and its downstream splicing regulator on CD44 alternative splicing was investigated. RESULTS: The expression of hnRNPK was significantly increased in GC and its upregulation was associated with tumor stage and metastasis. Loss-of-function studies found that hnRNPK could promote GC cell proliferation, migration, and invasion. The upregulation of hnRNPK activates the expression of the splicing regulator SRSF1 by binding to the first motif upstream the start codon (- 65 to - 77 site), thereby increasing splicing activity and expression of an oncogenic CD44 isoform, CD44E (has additional variant exons 8 to 10, CD44v8-v10). CONCLUSION: These findings revealed the importance of the hnRNPK-SRSF1-CD44E axis in promoting gastric tumorigenesis.

13.
Drug Dev Ind Pharm ; 45(9): 1556-1564, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31271317

RESUMO

Objective: This study was aimed to develop DOX-TPP loaded acetal-PEG-PCCL micelles to improve the clinical efficacy of drug resistance tumor. Significance: Chemotherapy is one of the main treatments for breast cancer but is plagued by multidrug resistance (MDR). DOX-TPP-loaded micelles can enhance the specific concentration of drugs in the tumor and improve the efficacy and overcome MDR. Methods: In this study, DOX-TPP-loaded micelles based on acetal-PEG-PCCL were prepared and their physicochemical properties were characterized. The cellular uptake and ability to induce apoptosis of the micelles was confirmed by flow cytometry in MCF-7/ADR cells. In addition, cytotoxicity of the micelles was studied in MCF-7 cells and MCF-7/ADR cells. Confocal is used to study the subcellular distribution of DOX. Free DOX-TPP or DOX-TPP-loaded acetal-PEG-PCCL micelles were administered via intravenous injection in the tail vain for the biodistribution study in vivo. Results: The diameter of micelles was about 102.4 nm and their drug-loading efficiency is 61.8%. The structural characterization was confirmed by 1H NMR. The micelles exhibited better antitumor efficacy compared to free doxorubicin in MCF-7/ADR cells by MTT assay. The apoptotic rate and the cellular uptake of micelles were significantly higher than free DOX and DOX-TPP. Micelles can efficiently deliver mitochondria-targeting DOX-TPP to tumor cells. The result of bio-distribution showed that the micelles had stronger tumor infiltration ability than free drugs. Conclusions: In this study, mitochondriotropic DOX-TPP was conjugated to the nanocarrier acetal-PEG-PCCL via ionic interaction to form a polymer, which spontaneously formed spherical micelles. The cytotoxicity and cellular uptake of the micelles are superior to free DOX and exhibit mitochondrial targeting and passive tumor targeting, indicating that they have potential prospects.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/administração & dosagem , Nanoconjugados/química , Compostos Organofosforados/administração & dosagem , Acetais/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Composição de Medicamentos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Micelas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Compostos Organofosforados/química , Compostos Organofosforados/farmacocinética , Poliésteres/química , Polietilenoglicóis/química , Distribuição Tecidual
14.
Mol Pharm ; 15(3): 882-891, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29357260

RESUMO

Multidrug resistance (MDR) is the major obstacle for chemotherapy. In a previous study, we have successfully synthesized a novel doxorubicin (DOX) derivative modified by triphenylphosphonium (TPP) to realize mitochondrial delivery of DOX and showed the potential of this compound to overcome DOX resistance in MDA-MB-435/DOX cells. (1) To introduce specificity for DOX-TPP to cancer cells, here we report on the conjugation of DOX-TPP to hyaluronic acid (HA) by hydrazone bond with adipic acid dihydrazide (ADH) as the acid-responsive linker, producing HA- hydra-DOX-TPP nanoparticles. Hyaluronic acid (HA) is a natural water-soluble linear glycosaminoglycan, which was hypothesized to increase the accumulation of nanoparticles containing DOX-TPP in the mitochondria of tumor cells upon systemic administration, overcoming DOX resistance, in vivo. Our results showed HA- hydra-DOX-TPP to self-assemble to core/shell nanoparticles of good dispersibility and effective release of DOX-TPP from the HA- hydra-DOX-TPP conjugate in cancer cells, which was followed by enhanced DOX mitochondria accumulation. The HA- hydra-DOX-TPP nanoparticles also showed improved anticancer effects, better tumor cell apoptosis, and better safety profile compared to free DOX in MCF-7/ADR bearing mice.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/administração & dosagem , Mitocôndrias/metabolismo , Nanoconjugados/química , Animais , Antibióticos Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Doxorrubicina/química , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Concentração de Íons de Hidrogênio , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Acta Pharmacol Sin ; 39(10): 1681-1692, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29849132

RESUMO

Breast cancer is the leading cause of cancer-related death for women, and multidrug resistance (MDR) is the major obstacle faced by chemotherapy for breast cancer. We have previously synthesized a doxorubicin (DOX) derivative by conjugating DOX with triphenylphosphonium (TPP) to achieve mitochondrial delivery, which induced higher cytotoxicity in drug-resistant breast cancer cells than DOX itself. Due to its amphiphilicity, TPP-DOX is difficult to physically entrap in nanocarriers. Thus, we linked it to hyaluronic acid (HA) by a novel ionic bond utilizing the specific bromide ion of TPP to form supra-molecular self-assembled structures (HA-ionic-TPP-DOX). The product was analyzed uisng 1H-NMR, 13C-NMR and mass spectrometry. The HA nanocarriers (HA-ionic-TPP-DOX) were shown to self-assemble into spherical nanoparticles, and sensitive to acidic pH in terms of morphology and drug release. Compared with free DOX, HA-ionic-TPP-DOX produced much greater intracellular DOX accumulation and mitochondrial localization, leading to increased ROS production, slightly decreased mitochondrial membrane potential, increased cytotoxicity in MCF-7/ADR cells and enhanced tumor targeting in vivo. In xenotransplant zebrafish model with the MCF-7/ADR cell line, both TPP-DOX and HA-ionic-TPP-DOX inhibited tumor cell proliferation without inducing significant side effects compared with free DOX. In addition, we observed a better anti-tumor effect of HA-ionic-TPP-DOX on MCF-7/ADR cells in zebrafish than that of TPP-DOX treatment. Furthermore, HA-ionic-DOX-TPP exhibited favorable biocompatibility and anti-tumor effects in MCF-7/ADR tumor-bearing nude mice in comparison with the effects of TPP-DOX and DOX, suggesting the potential of HA-ionic-TPP-DOX for the targeted delivery and controlled release of TPP-DOX, which can lead to the sensitization of resistant breast tumors.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Ácido Hialurônico/química , Mitocôndrias/metabolismo , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Doxorrubicina/química , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oniocompostos/química , Compostos Organofosforados/química , Peixe-Zebra
16.
Nano Lett ; 17(12): 7323-7329, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29185771

RESUMO

The elongation of free-standing one-dimensional (1D) functional nanostructures into lengths above the millimeter range has brought new practical applications as they combine the remarkable properties of nanostructured materials with macroscopic lengths. However, it remains a big challenge to prepare 1D silicon nanostructures, one of the most important 1D nanostructures, with lengths above the millimeter range. Here we report the unprecedented preparation of ultralong single-crystalline Si nanowires with length up to 2 cm, which can function as the smallest active material to facilitate the miniaturization of macroscopic devices. These ultralong Si nanowires with augmented flexibility are of emerging interest for flexible electronics. We also demonstrate the first single-nanowire-based wearable joint motion sensor with superior performance to reported systems, which just represents one example of novel devices that can be built from these nanowires. The preparation of ultralong Si nanowires will stimulate the fabrication and miniaturization of electric, optical, medical, and mechanical devices to impact the semiconductor industry and our daily life in the near future.

17.
J Nanosci Nanotechnol ; 17(2): 1438-442, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-29687981

RESUMO

The development of low-cost and high-performance cathode catalyst remains a great challenge for constructing large-scale microbial fuel cells (MFCs). Here, the multi-walled carbon nanotube (MWCNT) supported cobalt selenide (Co0.85Se) composite was synthesized by a simple and effective hydrothermal process for the first time. Compared with uncomposited electrodes such as MWCNTs and Co0.85Se, the as-prepared Co0.85Se/MWCNT composite electrode exhibited significantly improved electrochemical performance and durability. The maximum power density of Co0.85Se/MWCNT composite electrode is 243.6 mW m­2, which is 12.2 fold higher than that of unmodified electrode and more than twice as much as those observed for MWCNTs cathode (114.1 mW m­2) and Co0.85Se cathode (119.8 mW m­2). This work may provide not only the fundamental studies on carbon supported transition-metal selenide but also a new kind of promising alternative electrode in the technology of power generation from MFCs.

18.
Hypertens Res ; 47(5): 1273-1287, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438725

RESUMO

m6A (N6­methyladenosine) is the most common and abundant apparent modification in mRNA of eukaryotes. The modification of m6A is regulated dynamically and reversibly by methyltransferase (writer), demethylase (eraser), and binding protein (reader). It plays a significant role in various processes of mRNA metabolism, including regulation of transcription, maturation, translation, degradation, and stability. Pulmonary arterial hypertension (PAH) is a malignant cardiopulmonary vascular disease characterized by abnormal proliferation of pulmonary artery smooth muscle cells. Despite the existence of several effective and targeted therapies, there is currently no cure for PAH and the prognosis remains poor. Recent studies have highlighted the crucial role of m6A modification in cardiovascular diseases. Investigating the role of RNA m6A methylation in PAH could provide valuable insights for drug development. This review aims to explore the mechanism and function of m6A in the pathogenesis of PAH and discuss the potential targeting of RNA m6A methylation modification as a treatment for PAH.


Assuntos
Adenosina , Adenosina/análogos & derivados , Hipertensão Arterial Pulmonar , Humanos , Metilação , Adenosina/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Animais , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Metilação de RNA
19.
Small ; 9(17): 2872-9, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23495044

RESUMO

A new Schottky junction ultraviolet photodetector (UVPD) is fabricated by coating a free-standing ZnO nanorod (ZnONR) array with a layer of transparent monolayer graphene (MLG) film. The single-crystalline [0001]-oriented ZnONR array has a length of about 8-11 µm, and a diameter of 100∼600 nm. Finite element method (FEM) simulation results show that this novel nanostructure array/MLG heterojunction can trap UV photons effectively within the ZnONRs. By studying the I-V characteristics in the temperature range of 80-300 K, the barrier heights of the MLG film/ZnONR array Schottky barrier are estimated at different temperatures. Interestingly, the heterojunction diode with typical rectifying characteristics exhibits a high sensitivity to UV light illumination and a quick response of millisecond rise time/fall times with excellent reproducibility, whereas it is weakly sensitive to visible light irradiation. It is also observed that this UV photodetector (PD) is capable of monitoring a fast switching light with a frequency as high as 2250 Hz. The generality of the above results suggest that this MLG film/ZnONR array Schottky junction UVPD will have potential application in future optoelectronic devices.


Assuntos
Grafite/química , Nanoestruturas/química , Nanotecnologia/métodos , Nanotubos/economia , Raios Ultravioleta , Óxido de Zinco/química
20.
Nanotechnology ; 24(9): 095603, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23403941

RESUMO

p-type ZnSe nanowires (NWs) with tunable electrical conductivity were fabricated on a large scale by evaporating a mixed powder composed of ZnSe and Sb in different ratios. According to the structural characterization, the Sb-doped ZnSe NWs are of single crystalline form and grow along the [001] direction. The presence of Sb in the ZnSe NWs was confirmed by XPS spectra. Electrical measurement of a single ZnSe:Sb NW based back-gate metal-oxide field-effect-transistor reveals that all the doped NWs exhibit typical p-type conduction characteristics, and the conductivity can be tuned over eight orders of magnitude, from 6.36 × 10(-7) S cm(-1) for the undoped sample to ∼37.33 S cm(-1) for the heavily doped sample. A crossed p-n nano-heterojunction photodetector made from the as-doped nanostructures displays pronounced rectification behavior, with a rectification ratio as high as 10(3) at ±5 V. Remarkably, it exhibits high sensitivity to ultraviolet light illumination with good reproducibility and quick photoresponse. Finally, the work mechanism of such a p-n junction based photodetector was elucidated. The generality of the above result suggests that the as-doped p-type ZnSe NWs will find wide application in future optoelectronics devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa