Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(1): E75-E84, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27994152

RESUMO

MRI-guided pulsed focused ultrasound (pFUS) combined with systemic infusion of ultrasound contrast agent microbubbles (MB) causes localized blood-brain barrier (BBB) disruption that is currently being advocated for increasing drug or gene delivery in neurological diseases. The mechanical acoustic cavitation effects of opening the BBB by low-intensity pFUS+MB, as evidenced by contrast-enhanced MRI, resulted in an immediate damage-associated molecular pattern (DAMP) response including elevations in heat-shock protein 70, IL-1, IL-18, and TNFα indicative of a sterile inflammatory response (SIR) in the parenchyma. Concurrent with DAMP presentation, significant elevations in proinflammatory, antiinflammatory, and trophic factors along with neurotrophic and neurogenesis factors were detected; these elevations lasted 24 h. Transcriptomic analysis of sonicated brain supported the proteomic findings and indicated that the SIR was facilitated through the induction of the NFκB pathway. Histological evaluation demonstrated increased albumin in the parenchyma that cleared by 24 h along with TUNEL+ neurons, activated astrocytes, microglia, and increased cell adhesion molecules in the vasculature. Infusion of fluorescent beads 3 d before pFUS+MB revealed the infiltration of CD68+ macrophages at 6 d postsonication, as is consistent with an innate immune response. pFUS+MB is being considered as part of a noninvasive adjuvant treatment for malignancy or neurodegenerative diseases. These results demonstrate that pFUS+MB induces an SIR compatible with ischemia or mild traumatic brain injury. Further investigation will be required before this approach can be widely implemented in clinical trials.


Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/fisiopatologia , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Sonicação/métodos , Ultrassonografia/métodos , Animais , Astrócitos/metabolismo , Moléculas de Adesão Celular/metabolismo , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Inflamação/patologia , Interleucina-1/metabolismo , Interleucina-18/metabolismo , Macrófagos/imunologia , Microglia/metabolismo , Doenças Neurodegenerativas/terapia , Tecido Parenquimatoso/patologia , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
2.
Ann Neurol ; 79(6): 907-20, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27230970

RESUMO

OBJECTIVE: Metrics of diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI) can detect diffuse axonal injury in traumatic brain injury (TBI). The relationship between the changes in these imaging measures and the underlying pathologies is still relatively unknown. This study investigated the radiological-pathological correlation between these imaging techniques and immunohistochemistry using a closed head rat model of TBI. METHODS: TBI was performed on female rats followed longitudinally by magnetic resonance imaging (MRI) out to 30 days postinjury, with a subset of animals selected for histopathological analyses. A MRI-based finite element analysis was generated to characterize the pattern of the mechanical insult and estimate the extent of brain injury to direct the pathological correlation with imaging findings. RESULTS: DTI axial diffusivity and fractional anisotropy (FA) were sensitive to axonal integrity, whereas radial diffusivity showed significant correlation to the myelin compactness. FA was correlated with astrogliosis in the gray matter, whereas mean diffusivity was correlated with increased cellularity. Secondary inflammatory responses also partly affected the changes of these DTI metrics. The magnetization transfer ratio (MTR) at 3.5ppm demonstrated a strong correlation with both axon and myelin integrity. Decrease in MTR at 20ppm correlated with the extent of astrogliosis in both gray and white matter. INTERPRETATION: Although conventional T2-weighted MRI did not detect abnormalities following TBI, DTI and MTI afforded complementary insight into the underlying pathologies reflecting varying injury states over time, and thus may substitute for histology to reveal diffusive axonal injury pathologies in vivo. This correlation of MRI and histology furthers understanding of the microscopic pathology underlying DTI and MTI changes in TBI. Ann Neurol 2016;79:907-920.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Anisotropia , Lesões Encefálicas Traumáticas/complicações , Modelos Animais de Doenças , Feminino , Gliose/complicações , Gliose/patologia , Substância Cinzenta/patologia , Fibras Nervosas Mielinizadas/patologia , Ratos , Substância Branca/patologia
3.
Nanomedicine ; 13(2): 503-513, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27520728

RESUMO

Stem cell-based therapies have become a major focus in regenerative medicine and to treat diseases. A straightforward approach combining three drugs, heparin (H), protamine (P) with ferumoxytol (F) in the form of nanocomplexes (NCs) effectively labeled stem cells for cellular MRI. We report on the physicochemical characteristics for optimizing the H, P, and F components in different ratios, and mixing sequences, producing NCs that varied in hydrodynamic size. NC size depended on the order in which drugs were mixed in media. Electron microscopy of HPF or FHP showed that F was located on the surface of spheroidal shaped HP complexes. Human stem cells incubated with FHP NCs resulted in a significantly greater iron concentration per cell compared to that found in HPF NCs with the same concentration of F. These results indicate that FHP could be useful for labeling stem cells in translational studies in the clinic.


Assuntos
Óxido Ferroso-Férrico , Heparina , Protaminas , Células-Tronco , Rastreamento de Células , Humanos , Imageamento por Ressonância Magnética , Magnetismo , Nanopartículas , Transplante de Células-Tronco
4.
Cureus ; 16(4): e57829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38721168

RESUMO

Graft-versus-host disease (GvHD) is a common complication following hematopoietic stem cell transplant (HSCT) and has protean manifestations. It results from the activation of transplanted T lymphocytes against the HLA antigens of recipient cells, resulting in tissue destruction. The most commonly involved sites of acute GvHD are the skin and gut, with high mortality reported in the latter. Historically, surgery for gut GvHD has been reserved for those with frank perforations or uncontrolled hemorrhage. Here, we present a case of steroid and ruxolitinib refractory colonic GvHD in a 41-year-old female, which was ultimately managed with robotic-assisted total abdominal colectomy with resolution of enteric symptoms. This case highlights the role of surgical management in gut GvHD in patients who are refractory to the growing arsenal of immunomodulating agents. Given the rarity of surgical intervention in this population, more data are needed to minimize morbidity in this setting.

5.
Neuroimage Rep ; 4(1)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38558768

RESUMO

Introduction: Although cerebral edema is common following traumatic brain injury (TBI), its formation and progression are poorly understood. This is especially true for the mild TBI population, who rarely undergo magnetic resonance imaging (MRI) studies, which can pick up subtle structural details not visualized on computed tomography, in the first few days after injury. This study aimed to visually classify and quantitatively measure edema progression in relation to traumatic microbleeds (TMBs) in a cohort of primarily mild TBI patients up to 30 days after injury. Researchers hypothesized that hypointense lesions on Apparent Diffusion Coefficient (ADC) detected acutely after injury would evolve into hyperintense Fluid Attenuated Inversion Recover (FLAIR) lesions. Methods: This study analyzed the progression of cerebral edema after acute injury using multimodal MRI to classify TMBs as potential edema-related biomarkers. ADC and FLAIR MRI were utilized for edema classification at three different timepoints: ≤48 hours, ~1 week, and 30 days after injury. Hypointense lesions on ADC (ADC+) suggested the presence of cytotoxic edema while hyperintense lesions on FLAIR (FLAIR+) suggested vasogenic edema. Signal intensity Ratio (SIR) calculations were made using ADC and FLAIR to quantitatively confirm edema progression. Results: Our results indicated the presence of ADC+ lesions ≤48 hours and ~1 week were associated with FLAIR+ lesions at ~1 week and 30 days, respectively, suggesting some progression of cytotoxic edema to vasogenic edema over time. Ten out of 15 FLAIR+ lesions at 30 days (67%) were ADC+ ≤48 hours. However, ADC+ lesions ≤48 hours were not associated with FLAIR+ lesions at 30 days; 10 out of 25 (40%) ADC+ lesions ≤48 hours were FLAIR+ at 30 days, which could indicate that some lesions resolved or were not visualized due to associated atrophy or tissue necrosis. Quantitative analysis confirmed the visual progression of some TMB lesions from ADC+ to FLAIR+. FLAIR SIRs at ~1 week were significantly higher when lesions were ADC+ ≤48 hours (1.22 [1.08-1.32] vs 1.03 [0.97-1.11], p=0.002). Conclusion: Awareness of how cerebral edema can evolve in proximity to TMBs acutely after injury may facilitate identification and monitoring of patients with traumatic cerebrovascular injury and assist in development of novel therapeutic strategies.

6.
Am J Surg ; 224(1 Pt B): 475-482, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35086695

RESUMO

BACKGROUND: The Model for End Stage Liver Disease (MELD) predicts mortality for liver disease patients. The American College of Surgeons National Surgical Quality Improvement Program (NSQIP) estimates mortality risk for surgical patients; however, NSQIP does not collect data regarding liver disease. This study's aim was to examine the accuracy of NSQIP mortality estimates for patients with elevated MELD scores. METHODS: NSQIP participant user files from 2005 to 2016 were queried. MELD scores were calculated and patients with scores ≥10 included. NSQIP-predicted mortality was compared to actual mortality. RESULTS: 268,873 patients met inclusion criteria. Predicted and observed number of 30-day postoperative deaths were 20,644 (7.7%) and 21,764 (8.1%). For patients with MELD ≥24, NSQIP-predicted 30-day mortality underestimated actual mortality. For patients with MELD ≤22, predicted and actual risks were similar. CONCLUSION: NSQIP predicts 30-day mortality risk well for patients with MELD scores from 10 to 22, but underestimates risk for patients with higher MELD scores.


Assuntos
Doença Hepática Terminal , Hepatopatias , Cirurgiões , Doença Hepática Terminal/cirurgia , Humanos , Complicações Pós-Operatórias/epidemiologia , Melhoria de Qualidade , Estudos Retrospectivos , Medição de Risco , Índice de Gravidade de Doença , Estados Unidos/epidemiologia
7.
J Neurotrauma ; 38(22): 3107-3118, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34541886

RESUMO

Magnetic resonance imaging (MRI) is used rarely in the acute evaluation of traumatic brain injury (TBI) but may identify findings of clinical importance not detected by computed tomography (CT). We aimed to characterize the association of cytotoxic edema and hemorrhage, including traumatic microbleeds, on MRI obtained within hours of acute head trauma and investigated the relationship to clinical outcomes. Patients prospectively enrolled in the Traumatic Head Injury Neuroimaging Classification study (NCT01132937) with evidence of diffusion-related findings or hemorrhage on neuroimaging were included. Blinded interpretation of MRI for diffusion-weighted lesions and hemorrhage was conducted, with subsequent quantification of apparent diffusion coefficient (ADC) values. Of 161 who met criteria, 82 patients had conspicuous hyperintense lesions on diffusion-weighted imaging (DWI) with corresponding regions of hypointense ADC in proximity to hemorrhage. Median time from injury to MRI was 21 (10-30) h. Median ADC values per patient grouped by time from injury to MRI were lowest within 24 h after injury. The ADC values associated with hemorrhagic lesions are lowest early after injury, with an increase in diffusion during the subacute period, suggesting transformation from cytotoxic to vasogenic edema during the subacute post-injury period. Of 118 patients with outcome data, 60 had Glasgow Outcome Scale Extended scores ≤6 at 30/90 days post-injury. Cytotoxic edema on MRI (odds ratio [OR] 2.91 [1.32-6.37], p = 0.008) and TBI severity (OR 2.51 [1.32-4.74], p = 0.005) were independent predictors of outcome. These findings suggest that in patients with TBI who had findings of hemorrhage on CT, patients with DWI/ADC lesions on MRI are more likely to do worse.


Assuntos
Edema Encefálico/etiologia , Hemorragia Encefálica Traumática/complicações , Lesões Encefálicas Traumáticas/complicações , Adolescente , Adulto , Idoso , Edema Encefálico/diagnóstico por imagem , Hemorragia Encefálica Traumática/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Avaliação de Resultados em Cuidados de Saúde , Valor Preditivo dos Testes , Estudos Prospectivos , Fatores de Risco , Fatores de Tempo , Adulto Jovem
8.
Brain Commun ; 2(2): fcaa143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33829156

RESUMO

The meninges serve as a functional barrier surrounding the brain, critical to the immune response, and can be compromised following head trauma. Meningeal enhancement can be detected on contrast-enhanced MRI in patients presenting with acute traumatic brain injury, even when head CT is negative. Following head trauma, gadolinium-based contrast appears to extravasate from the vasculature, enhancing the dura within minutes, and later permeates the subarachnoid space. The aims of this study were to characterize the initial kinetics of the uptake of contrast agent after injury and the delayed redistribution of contrast enhancement in the subarachnoid space in hyperacute patients. Neuroimaging was obtained prospectively in two large ongoing observational studies of patients aged 18 years or older presenting to the emergency department with suspected acute head injury. Dynamic contrast-enhanced MRI studies in a cohort of consecutively enrolling patients with mild traumatic brain injury (n = 36) determined that the kinetic half-life of dural-related meningeal enhancement was 1.3 ± 0.6 min (95% enhancement within 6 min). The extravasation of contrast into the subarachnoid space was investigated in a cohort of CT negative mild traumatic brain injury patients initially imaged within 6 h of injury (hyperacute) who subsequently underwent a delayed MRI, with no additional contrast administration, several hours after the initial MRI. Of the 32 patients with delayed post-contrast imaging, 18 (56%) had conspicuous expansion of the contrast enhancement into the subarachnoid space, predominantly along the falx and superior sagittal sinus. Patients negative for traumatic meningeal enhancement on initial hyperacute MRI continued to have no evidence of meningeal enhancement on the delayed MRI. These studies demonstrate that (i) the initial enhancement of the traumatically injured meninges occurs within minutes of contrast injection, suggesting highly permeable meningeal vasculature, and that (ii) contrast in the meninges redistributes within the subarachnoid space over the period of hours, suggesting a compromise in the blood-brain and/or blood-cerebrospinal barriers. Data from the parent study indicate that up to one in two patients with mild traumatic brain injury have traumatic brain injury on acute (<48 h) MRI, with a higher prevalence seen in patients with moderate or severe traumatic brain injury. The current study's findings of traumatic meningeal enhancement and the subsequent delayed extravasation of contrast into the subarachnoid spaces indicate that a substantial percentage of patients with even mild traumatic brain injury may have a transient disruption in barriers separating the vasculature from the brain.

9.
J Neurotrauma ; 36(8): 1335-1342, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30351183

RESUMO

Accurate diagnosis of traumatic brain injury (TBI) is critical to ensure that patients receive appropriate follow-up care, avoid risk of subsequent injury, and are aware of possible long-term consequences. However, diagnosis of TBI, particularly in the emergency department (ED), can be difficult because the symptoms of TBI are vague and nonspecific, and patients with suspected TBI may present with additional injuries that require immediate medical attention. We performed a retrospective chart review to evaluate accuracy of TBI diagnosis in the ED. Records of 1641 patients presenting to the ED with suspected TBI and a head computed tomography (CT) were reviewed. We found only 47% of patients meeting the American Congress of Rehabilitation Medicine criteria for TBI received a documented ED diagnosis of TBI in medical records. After controlling for demographic and clinical factors, patients presenting at a level I trauma center, with cause of injury other than fall, without CT findings of TBI, and without loss of consciousness were more likely to lack documented diagnosis despite meeting diagnostic criteria for TBI. A greater proportion of patients without documented ED diagnosis of TBI were discharged home compared to those with a documented diagnosis of TBI (58% vs. 40%; p < 0.001). Together, these data suggest that many patients who have sustained a TBI are discharged home from the ED without a documented diagnosis of TBI, and that improved awareness and implementation of diagnostic criteria for TBI is important in the ED and for in- and outpatient providers.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico , Serviço Hospitalar de Emergência/normas , Neurologia/normas , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
10.
Theranostics ; 8(17): 4837-4855, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279741

RESUMO

Magnetic resonance imaging (MRI)-guided pulsed focused ultrasound (pFUS) combined with microbubbles (MB) contrast agent infusion has been shown to transiently disrupt the blood-brain barrier (BBBD), increasing the delivery of neurotherapeutics to treat central nervous system (CNS) diseases. pFUS interaction with the intravascular MB results in acoustic cavitation forces passing through the neurovascular unit (NVU), inducing BBBD detected on contrast-enhanced MRI. Multiple pFUS+MB exposures in Alzheimer's disease (AD) models are being investigated as a method to clear amyloid plaques by activated microglia or infiltrating immune cells. Since it has been reported that pFUS+MB can induce a sterile inflammatory response (SIR) [1-5] in the rat, the goal of this study was to investigate the potential long-term effects of SIR in the brain following single and six weekly sonications by serial high-resolution MRI and pathology. Methods: Female Sprague Dawley rats weighing 217±16.6 g prior to sonication received bromo-deoxyuridine (BrdU) to tag proliferating cells in the brain. pFUS was performed at 548 kHz, ultrasound burst 10 ms and initial peak negative pressure of 0.3 MPa (in water) for 120 s coupled with a slow infusion of ~460 µL/kg (5-8×107 MB) that started 30 s before and 30 s during sonication. Nine 2 mm focal regions in the left cortex and four regions over the right hippocampus were treated with pFUS+MB. Serial high-resolution brain MRIs at 3 T and 9.4 T were obtained following a single or during the course of six weekly pFUS+MB resulting in BBBD in the left cortex and the right hippocampus. Animals were monitored over 7 to 13 weeks and imaging results were compared to histology. Results: Fewer than half of the rats receiving a single pFUS+MB exposure displayed hypointense voxels on T2*-weighted (w) MRI at week 7 or 13 in the cortex or hippocampus without differences compared to the contralateral side on histograms of T2* maps. Single sonicated rats had evidence of limited microglia activation on pathology compared to the contralateral hemisphere. Six weekly pFUS+MB treatments resulted in pathological changes on T2*w images with multiple hypointense regions, cortical atrophy, along with 50% of rats having persistent BBBD and astrogliosis by MRI. Pathologic analysis of the multiple sonicated animals demonstrated the presence of metallophagocytic Prussian blue-positive cells in the parenchyma with significantly (p<0.05) increased areas of activated astrocytes and microglia, and high numbers of systemic infiltrating CD68+ macrophages along with BrdU+ cells compared to contralateral brain. In addition, multiple treatments caused an increase in the number of hyperphosphorylated Tau (pTau)-positive neurons containing neurofibrillary tangles (NFT) in the sonicated cortex but not in the hippocampus when compared to contralateral brain, which was confirmed by Western blot (WB) (p<0.04). Conclusions: The repeated SIR following multiple pFUS+MB treatments could contribute to changes on MR imaging including persistent BBBD, cortical atrophy, and hypointense voxels on T2w and T2*w images consistent with pathological injury. Moreover, areas of astrogliosis, activated microglia, along with higher numbers of CD68+ infiltrating macrophages and BrdU+ cells were detected in multiple sonicated areas of the cortex and hippocampus. Elevations in pTau and NFT were detected in neurons of the multiple sonicated cortex. Minimal changes on MRI and histology were observed in single pFUS+MB-treated rats at 7 and 13 weeks post sonication. In comparison, animals that received 6 weekly sonications demonstrated evidence on MRI and histology of vascular damage, inflammation and neurodegeneration associated with the NVU commonly observed in trauma. Further investigation is recommended of the long-term effects of multiple pFUS+MB in clinical trials.


Assuntos
Córtex Cerebral/patologia , Córtex Cerebral/efeitos da radiação , Hipocampo/patologia , Hipocampo/efeitos da radiação , Microbolhas/efeitos adversos , Ultrassonografia/efeitos adversos , Animais , Histocitoquímica , Estudos Longitudinais , Imageamento por Ressonância Magnética , Ratos Sprague-Dawley
11.
Sci Rep ; 8(1): 669, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330386

RESUMO

Metabolic abnormalities are commonly observed in traumatic brain injury (TBI) patients exhibiting long-term neurological deficits. This study investigated the feasibility and reproducibility of using chemical exchange saturation transfer (CEST) MRI to detect cerebral metabolic depression in experimental TBI. Phantom and in vivo CEST experiments were conducted at 9.4 Tesla to optimize the selective saturation for enhancing the endogenous contrast-weighting of the proton exchanges over the range of glucose proton chemical shifts (glucoCEST) in the resting rat brain. The optimized glucoCEST-weighted imaging was performed on a closed-head model of diffuse TBI in rats with 2-deoxy-D-[14C]-glucose (2DG) autoradiography validation. The results demonstrated that saturation duration of 1‒2 seconds at pulse powers 1.5‒2µT resulted in an improved contrast-to-noise ratio between the gray and white matter comparable to 2DG autoradiographs. The intrasubject (n = 4) and intersubject (n = 3) coefficient of variations for repeated glucoCEST acquisitions (n = 4) ranged between 8‒16%. Optimization for the TBI study revealed that glucoCEST-weighted images with 1.5µT power and 1 s saturation duration revealed the greatest changes in contrast before and after TBI, and positively correlated with 2DG autoradiograph (r = 0.78, p < 0.01, n = 6) observations. These results demonstrate that glucoCEST-weighted imaging may be useful in detecting metabolic abnormalities following TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Glucose/metabolismo , Imageamento por Ressonância Magnética/instrumentação , Animais , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Interpretação de Imagem Assistida por Computador , Imagens de Fantasmas , Ratos , Sensibilidade e Especificidade
12.
J Neurotrauma ; 34(1): 248-256, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26905805

RESUMO

Spontaneous mild ventriculomegaly (MVM) was previously reported in ∼43% of Wistar rats in association with vascular anomalies without phenotypic manifestation. This mild traumatic brain injury (TBI) weight drop model study investigates whether MVM rats (n = 15) have different injury responses that could inadvertently complicate the interpretation of imaging studies compared with normal rats (n = 15). Quantitative MRI, including diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI), and immunohistochemistry (IHC) analysis were used to examine the injury pattern up to 8 days post-injury in MVM and normal rats. Prior to injury, the MVM brain showed significant higher mean diffusivity, axial diffusivity, and radial diffusivity, and lower fractional anisotropy (FA) and magnetization transfer ratio (MTR) in the corpus callosum than normal brain (p < 0.05). Following TBI, normal brains exhibited significant decreases of FA in the corpus callosum, whereas MVM brains demonstrated insignificant changes in FA, suggesting less axonal injury. At day 8 after mild TBI, MTR of the normal brains significantly decreased whereas the MTR of the MVM brains significantly increased. IHC staining substantiated the MRI findings, demonstrating limited axonal injury with significant increase of microgliosis and astrogliosis in MVM brain compared with normal animals. The radiological-pathological correlation data showed that both DTI and MTI were sensitive in detecting mild diffuse brain injury, although DTI metrics were more specific in correlating with histologically identified pathologies. Compared with the higher correlation levels reflecting axonal injury pathology in the normal rat mild TBI, the DTI and MTR metrics were more affected by the increased inflammation in the MVM rat mild TBI. Because MVM Wistar rats appear normal, there was a need to screen rats prior to TBI research to rule out the presence of ventriculomegaly, which may complicate the interpretation of imaging and IHC observations.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Hidrocefalia/diagnóstico por imagem , Animais , Encéfalo/patologia , Concussão Encefálica/patologia , Feminino , Hidrocefalia/patologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa