Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Planta Med ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698590

RESUMO

The carrot-made LTB-Syn antigen (cLTB-Syn) is a vaccine candidate against synucleinopathies based on carrot cells expressing the target antigen LTB and syn epitopes. Therefore, the development of an efficient production process is required with media culture optimization to increase the production yields as the main goal. In this study, the effect of two nitrogen sources (urea and glutamate) on callus cultures producing cLTB-Syn was studied, observing that the addition of 17 mM urea to MS medium favored the biomass yield. To optimize the MS media composition, the influence of seven medium components on biomass and cLTB-Syn production was first evaluated by a Plackett-Burman design (PBD). Then, three factors were further analyzed using a central composite design (CCD) and response surface methodology (RSM). The results showed a 1.2-fold improvement in biomass, and a 4.5-fold improvement in cLTB-Syn production was achieved at the shake-flask scale. At the bioreactor scale, there was a 1.5-fold increase in biomass and a 2.8-fold increase in cLTB-Syn yield compared with the standard MS medium. Moreover, the cLTB-Syn vaccine induced humoral responses in BALB/c mice subjected to either oral or subcutaneous immunization. Therefore, cLTB-Syn is a promising vaccine candidate that will aid in developing immunotherapeutic strategies to combat PD and other neurodegenerative diseases without the need for cold storage, making it a financially viable option for massive immunization.

2.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361662

RESUMO

The dentate gyrus (DG) of the human hippocampus is a complex and dynamic structure harboring mature and immature granular neurons in diverse proliferative states. While most mammals show persistent neurogenesis through adulthood, human neurogenesis is still under debate. We found nuclear alterations in granular cells in autopsied human brains, detected by immunohistochemistry. These alterations differ from those reported in pyramidal neurons of the hippocampal circuit. Aging and early AD chromatin were clearly differentiated by the increased epigenetic markers H3K9me3 (heterochromatin suppressive mark) and H3K4me3 (transcriptional euchromatin mark). At early AD stages, lamin B2 was redistributed to the nucleoplasm, indicating cell-cycle reactivation, probably induced by hippocampal nuclear pathology. At intermediate and late AD stages, higher lamin B2 immunopositivity in the perinucleus suggests fewer immature neurons, less neurogenesis, and fewer adaptation resources to environmental factors. In addition, senile samples showed increased nuclear Tau interacting with aged chromatin, likely favoring DNA repair and maintaining genomic stability. However, at late AD stages, the progressive disappearance of phosphorylated Tau forms in the nucleus, increased chromatin disorganization, and increased nuclear autophagy support a model of biphasic neurogenesis in AD. Therefore, designing therapies to alleviate the neuronal nuclear pathology might be the only pathway to a true rejuvenation of brain circuits.


Assuntos
Doença de Alzheimer , Animais , Humanos , Adulto , Idoso , Doença de Alzheimer/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo , Cromatina/metabolismo , Mamíferos/genética
3.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638632

RESUMO

Cellular identity is determined through complex patterns of gene expression. Chromatin, the dynamic structure containing genetic information, is regulated through epigenetic modulators, mainly by the histone code. One of the main challenges for the cell is maintaining functionality and identity, despite the accumulation of DNA damage throughout the aging process. Replicative cells can remain in a senescent state or develop a malign cancer phenotype. In contrast, post-mitotic cells such as pyramidal neurons maintain extraordinary functionality despite advanced age, but they lose their identity. This review focuses on tau, a protein that protects DNA, organizes chromatin, and plays a crucial role in genomic stability. In contrast, tau cytosolic aggregates are considered hallmarks of Alzheimer´s disease (AD) and other neurodegenerative disorders called tauopathies. Here, we explain AD as a phenomenon of chromatin dysregulation directly involving the epigenetic histone code and a progressive destabilization of the tau-chromatin interaction, leading to the consequent dysregulation of gene expression. Although this destabilization could be lethal for post-mitotic neurons, tau protein mediates profound cellular transformations that allow for their temporal survival.


Assuntos
Doença de Alzheimer/metabolismo , Cromatina/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Cromatina/genética , DNA/química , DNA/genética , DNA/metabolismo , Dano ao DNA , Epigênese Genética , Instabilidade Genômica , Código das Histonas , Humanos , Nucleossomos/metabolismo , Fosforilação , Fatores de Tempo , Proteínas tau/química , Proteínas tau/genética
4.
Toxicol Appl Pharmacol ; 393: 114955, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32171569

RESUMO

Inorganic arsenic is among the major contaminants of groundwater in the world. Worldwide population-based studies demonstrate that chronic arsenic exposure is associated with poor cognitive performance among children and adults, while research in animal models confirms learning and memory deficits after arsenic exposure. The aim of this study was to investigate the long-term effects of environmentally relevant arsenic exposure in the myelination process of the prefrontal cortex (PFC) and corpus callosum (CC). A longitudinal study with repeated follow-up assessments was performed in male Wistar rats exposed to 3 ppm sodium arsenite in drinking water. Animals received the treatment from gestation until 2, 4, 6, or 12 months of postnatal age. The levels of myelin basic protein (MBP) were evaluated by immunohistochemistry/histology and immunoblotting from the PFC and CC. As plausible alterations associated with demyelination, we considered mitochondrial mass (VDAC) and two axonal damage markers: amyloid precursor protein (APP) level and phosphorylated neurofilaments. To analyze the microstructure of the CC in vivo, we acquired diffusion-weighted images at the same ages, from which we derived metrics using the tensor model. Significantly decreased levels of MBP were found in both regions together with significant increases of mitochondrial mass and slight axonal damage at 12 months in the PFC. Ultrastructural imaging demonstrated arsenic-associated decreases of white matter volume, water diffusion anisotropy, and increases in radial diffusivity. This study indicates that arsenic exposure is associated with a significant and persistent negative impact on microstructural features of white matter tracts.


Assuntos
Intoxicação por Arsênico/patologia , Doenças Desmielinizantes/patologia , Envelhecimento , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Intoxicação por Arsênico/diagnóstico por imagem , Arsenitos/toxicidade , Axônios/patologia , Corpo Caloso/patologia , Doenças Desmielinizantes/diagnóstico por imagem , Imagem de Tensor de Difusão , Água Potável , Imuno-Histoquímica , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína Básica da Mielina/metabolismo , Proteínas de Neurofilamentos/metabolismo , Córtex Pré-Frontal/patologia , Ratos , Ratos Wistar , Compostos de Sódio/toxicidade , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
5.
Int J Mol Sci ; 21(5)2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32155994

RESUMO

BACKGROUND: Recent reports point to a nuclear origin of Alzheimer's disease (AD). Aged postmitotic neurons try to repair their damaged DNA by entering the cell cycle. This aberrant cell cycle re-entry involves chromatin modifications where nuclear Tau and the nuclear lamin are involved. The purpose of this work was to elucidate their participation in the nuclear pathological transformation of neurons at early AD. METHODOLOGY: The study was performed in hippocampal paraffin embedded sections of adult, senile, and AD brains at I-VI Braak stages. We analyzed phospho-Tau, lamins A, B1, B2, and C, nucleophosmin (B23) and the epigenetic marker H4K20me3 by immunohistochemistry. RESULTS: Two neuronal populations were found across AD stages, one is characterized by a significant increase of Lamin A expression, reinforced perinuclear Lamin B2, elevated expression of H4K20me3 and nuclear Tau loss, while neurons with nucleoplasmic Lamin B2 constitute a second population. CONCLUSIONS: The abnormal cell cycle reentry in early AD implies a fundamental neuronal transformation. This implies the reorganization of the nucleo-cytoskeleton through the expression of the highly regulated Lamin A, heterochromatin repression and building of toxic neuronal tangles. This work demonstrates that nuclear Tau and lamin modifications in hippocampal neurons are crucial events in age-related neurodegeneration.


Assuntos
Doença de Alzheimer/patologia , Hipocampo/patologia , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Proteínas tau/metabolismo , Ciclo Celular/fisiologia , Senescência Celular/genética , Senescência Celular/fisiologia , Progressão da Doença , Hipocampo/citologia , Humanos , Neurônios/metabolismo , Lâmina Nuclear/metabolismo
6.
Chem Res Toxicol ; 31(1): 13-21, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29155576

RESUMO

Chronic arsenic exposure during development is associated with alterations of chemical transmission and demyelination, which result in cognitive deficits and peripheral neuropathies. At the cellular level, arsenic toxicity involves increased generation of reactive species that induce severe cellular alterations such as DNA fragmentation, apoptosis, and lipid peroxidation. It has been proposed that arsenic-associated neurodegeneration could evolve to Alzheimer disease in later life.1,2 In this study, the effects of chronic exposure to inorganic arsenic (3 ppm by drinking water) in Wistar rats on the production and elimination of Amyloid-ß (Aß) were evaluated. Male Wistar rats were exposed to 3 ppm of arsenic in drinking water from fetal development until 4 months of age. After behavioral deficits induced by arsenic exposure through contextual fear conditioning were verified, the brains were collected for the determination of total arsenic by inductively coupled plasma-mass spectrometry, the levels of amyloid precursor protein and receptor for advanced glycation end products (RAGE) by Western blot analysis as well as their transcript levels by RT-qPCR, Aß(1-42) estimation by ELISA assay and the enzymatic activity of ß-secretase (BACE1). Our results demonstrate that chronic arsenic exposure induces behavioral deficits accompanied of higher levels of soluble and membranal RAGE and the increase of Aß(1-42) cleaved. In addition, BACE1 enzymatic activity was increased, while immunoblot assays showed no differences in the low-density lipoprotein receptor-related protein 1 (LRP1) receptor among groups. These results provide evidence of the effects of arsenic exposure on the production of Aß(1-42) and cerebral amyloid clearance through RAGE in an in vivo model that displays behavioral alterations. This work supports the hypothesis that early exposure to metals may contribute to neurodegeneration associated with amyloid accumulation.


Assuntos
Peptídeos beta-Amiloides/biossíntese , Arsênio/administração & dosagem , Arsênio/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fragmentos de Peptídeos/biossíntese , Receptor para Produtos Finais de Glicação Avançada/biossíntese , Administração Oral , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar
7.
Gac Med Mex ; 153(1): 75-87, 2017.
Artigo em Espanhol | MEDLINE | ID: mdl-28128809

RESUMO

OBJECTIVE: Screening of psychopathology and associated factors in medical students employing an electronic self-report survey. METHOD: A transversal, observational, and comparative study that consisted of the following instruments: Sociodemographic survey; 2. Adult Self-Report Scale-V1 (ASRS); State-Trait Anxiety Inventory (STAI); Zung and Conde Self-Rating Depression Scale, Almonte-Herskovic Sexual Orientation Self-Report; Plutchik Suicide Risk Scale; Alcohol Use Disorders Identification Test Identification (AUDIT); Fagerström Test for Nicotine Dependence; 9. Maslach Burnout Inventory (MBI); Eating Disorder Inventory 2 (EDI). RESULTS: We gathered 323 student surveys from medical students of the first, third and sixth grades. The three more prevalent disorders were depression (24%), attention deficit disorders with hyperactivity (28%) and anxiety (13%); the prevalence of high-level burnout syndrome was 13%. Also, the fifth part of the students had detrimental use of tobacco and alcohol. CONCLUSION: Sixty percent of medical students had either one or more probable disorder or burnout. An adequate screening and treatment of this population could prevent severe mental disorders and the associated factors could help us to create a risk profile. This model is an efficient research tool for screening and secondary prevention.


Assuntos
Transtornos Mentais/diagnóstico , Estudantes de Medicina , Adolescente , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Testes Psicológicos , Autorrelato , Adulto Jovem
8.
Brain Res ; 1775: 147742, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34848172

RESUMO

Epidemiological studies demonstrate that arsenic exposure is associated with cognitive dysfunction. Experimental arsenic exposure models showed learning and memory deficits and molecular changes resembling the functional and pathologic neurodegeneration features. The present work focuses on hippocampal pathological changes in Wistar rats induced by continuous arsenic exposure from in utero up to 12 months of age, evaluated by magnetic resonance imaging along with immunohistochemistry. Diffusion-weighted images revealed age-related lower fractional anisotropy and higher radial-axial and mean diffusivity at 6 and 12 months, indicating that arsenic exposure leads to hippocampal demyelination. These structural alterations were paralleled by immunohistochemical changes that showed a significant loss of myelin basic protein in CA1 and CA3 regions accompanied by increased glial fibrillary acidic protein expression at all time-points studied. Concomitantly, arsenic exposure induced an altered morphology of astrocytes at all studied ages, whereas increased synaptogenesis was only observed at two months of age. These results suggest that environmental arsenic exposure is linked to impaired hippocampal connectivity and perhaps early glial senescence, which together might resemble a premature aging phenomenon leading to cognitive deficits.


Assuntos
Arsênio/farmacologia , Astrócitos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Substância Branca/efeitos dos fármacos , Animais , Astrócitos/citologia , Forma Celular/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Wistar , Substância Branca/citologia , Substância Branca/diagnóstico por imagem
9.
Neurosci Lett ; 749: 135741, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33610669

RESUMO

Age-related pathologies like Alzheimer`s disease (AD) imply cellular responses directed towards repairing DNA damage. Postmitotic neurons show progressive accumulation of oxidized DNA during decades of brain aging, which is especially remarkable in AD brains. The characteristic cytoskeletal pathology of AD neurons is brought about by the progressive changes that neurons undergo throughout aging, and their irreversible nuclear transformation initiates the disease. This review focusses on critical molecular events leading to the loss of plasticity that underlies cognitive deficits in AD. During healthy neuronal aging, nuclear Tau participates in the regulation of the structure and function of the chromatin. The aberrant cell cycle reentry initiated for DNA repair triggers a cascade of events leading to the dysfunctional AD neuron, whereby Tau protein exits the nucleus leading to chromatin disorganization. Lamin A, which is not typically expressed in neurons, appears at the transformation from senile to AD neurons and contributes to halting the consequences of cell cycle reentry and nuclear Tau exit, allowing the survival of the neuron. Nevertheless, this irreversible nuclear transformation alters the nucleic acid and protein synthesis machinery as well as the nuclear lamina and cytoskeleton structures, leading to neurofibrillary tangles formation and final neurodegeneration.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo , Humanos , Neurônios/metabolismo
10.
Neurotox Res ; 39(6): 1970-1980, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34533753

RESUMO

There is solid epidemiological evidence that arsenic exposure leads to cognitive impairment, while experimental work supports the hypothesis that it also contributes to neurodegeneration. Energy deficit, oxidative stress, demyelination, and defective neurotransmission are demonstrated arsenic effects, but it remains unclear whether synaptic structure is also affected. Employing both a triple-transgenic Alzheimer's disease model and Wistar rats, the cortical microstructure and synapses were analyzed under chronic arsenic exposure. Male animals were studied at 2 and 4 months of age, after exposure to 3 ppm sodium arsenite in drinking water during gestation, lactation, and postnatal development. Through nuclear magnetic resonance, diffusion-weighted images were acquired and anisotropy (integrity; FA) and apparent diffusion coefficient (dispersion degree; ADC) metrics were derived. Postsynaptic density protein and synaptophysin were analyzed by means of immunoblot and immunohistochemistry, while dendritic spine density and morphology of cortical pyramidal neurons were quantified after Golgi staining. A structural reorganization of the cortex was evidenced through high-ADC and low-FA values in the exposed group. Similar changes in synaptic protein levels in the 2 models suggest a decreased synaptic connectivity at 4 months of age. An abnormal dendritic arborization was observed at 4 months of age, after increased spine density at 2 months. These findings demonstrate alterations of cortical synaptic connectivity and microstructure associated to arsenic exposure appearing in young rodents and adults, and these subtle and non-adaptive plastic changes in dendritic spines and in synaptic markers may further progress to the degeneration observed at older ages.


Assuntos
Intoxicação por Arsênico/patologia , Córtex Cerebral/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Intoxicação por Arsênico/diagnóstico por imagem , Western Blotting , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Imagem de Tensor de Difusão , Feminino , Masculino , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Wistar , Sinapses/patologia
11.
JAMA Neurol ; 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32986090

RESUMO

IMPORTANCE: Deposition of the pathological α-synuclein (αSynP) in the brain is the hallmark of synucleinopathies, including Parkinson disease (PD), Lewy body dementia (LBD), and multiple system atrophy (MSA). Whether real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) assays can sensitively detect skin biomarkers for PD and non-PD synucleinopathies remains unknown. OBJECTIVE: To develop sensitive and specific skin biomarkers for antemortem diagnosis of PD and other synucleinopathies. DESIGN, SETTING, AND PARTICIPANTS: This retrospective and prospective diagnostic study evaluated autopsy and biopsy skin samples from neuropathologically and clinically diagnosed patients with PD and controls without PD. Autopsy skin samples were obtained at 3 medical centers from August 2016 to September 2019, and biopsy samples were collected from 3 institutions from August 2018 to November 2019. Based on neuropathological and clinical diagnoses, 57 cadavers with synucleinopathies and 73 cadavers with nonsynucleinopathies as well as 20 living patients with PD and 21 living controls without PD were included. Specifically, cadavers and participants had PD, LBD, MSA, Alzheimer disease, progressive supranuclear palsy, or corticobasal degeneration or were nonneurodegenerative controls (NNCs). A total of 8 approached biopsy participants either refused to participate in or were excluded from this study due to uncertain clinical diagnosis. Data were analyzed from September 2019 to April 2020. MAIN OUTCOMES AND MEASURES: Skin αSynP seeding activity was analyzed by RT-QuIC and PMCA assays. RESULTS: A total of 160 autopsied skin specimens from 140 cadavers (85 male cadavers [60.7%]; mean [SD] age at death, 76.8 [10.1] years) and 41 antemortem skin biopsies (27 male participants [66%]; mean [SD] age at time of biopsy, 65.3 [9.2] years) were analyzed. RT-QuIC analysis of αSynP seeding activity in autopsy abdominal skin samples from 47 PD cadavers and 43 NNCs revealed 94% sensitivity (95% CI, 85-99) and 98% specificity (95% CI, 89-100). As groups, RT-QuIC also yielded 93% sensitivity (95% CI, 85-97) and 93% specificity (95% CI, 83-97) among 57 cadavers with synucleinopathies (PD, LBD, and MSA) and 73 cadavers without synucleinopathies (Alzheimer disease, progressive supranuclear palsy, corticobasal degeneration, and NNCs). PMCA showed 82% sensitivity (95% CI, 76-88) and 96% specificity (95% CI, 85-100) with autopsy abdominal skin samples from PD cadavers. From posterior cervical and leg skin biopsy tissues from patients with PD and controls without PD, the sensitivity and specificity were 95% (95% CI, 77-100) and 100% (95% CI, 84-100), respectively, for RT-QuIC and 80% (95% CI, 49-96) and 90% (95% CI, 60-100) for PMCA. CONCLUSIONS AND RELEVANCE: This study provides proof-of-concept that skin αSynP seeding activity may serve as a novel biomarker for antemortem diagnoses of PD and other synucleinopathies.

12.
Arch Toxicol ; 83(6): 557-63, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19198805

RESUMO

The understanding of the biomethylation process of arsenic is essential to uncover the mechanisms of arsenic toxicity. This work analyzes the time course of arsenic species in the brain and liver of adult mice, after a single oral administration of three arsenate doses [2.5, 5.0 and 10 mg As(V)/kg]. Quantification of arsenic species was performed by means of liquid chromatography coupled to atomic fluorescence 2, 5, 8, 12 and 24 h after administration. The results show that 2 h after arsenate administration inorganic arsenic arrives to the liver and its concentration diminishes gradually until becoming non-detectable at 12 h. Arsenic takes longer to appear in the brain and it is present only as dimethyl arsinic acid. Since arsenic concentration decreases in liver while it increases in the brain, this suggests that the arsenic metabolite reaches the brain after formation in the liver. Importantly, the fact that dimethyl arsinic acid is no longer present after 24 h suggests the existence of a mechanism to clear this metabolite from brain tissue.


Assuntos
Arseniatos/farmacocinética , Encéfalo/metabolismo , Ácido Cacodílico/farmacocinética , Fígado/metabolismo , Administração Oral , Animais , Arseniatos/administração & dosagem , Cromatografia Líquida de Alta Pressão/métodos , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Tempo , Distribuição Tecidual
13.
J Neurol Sci ; 396: 87-93, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445232

RESUMO

The protein alpha-synuclein (α-Syn) has been linked to neuroinflammatory conditions. We investigated whether the presence of α-Syn in peripheral tissues is a surrogate of brain inflammatory status in a small group of relapsing-remitting multiple sclerosis (RRMS) patients in a pilot cross-sectional study. Skin biopsies and peripheral blood were sampled from 34 healthy controls and 23 MS patients for measurement of α-Syn levels. Within the RRMS group 15 patients were in remission, and 8 patients were in the relapsing phase. The protein α-Syn was evaluated by means of immunohistochemistry and flow cytometry in skin and nucleated blood cells, respectively. In the skin, α-Syn levels were lower in relapsing MS than in the other groups, both in positive area (p = .021) and staining intensity (p = .004). In blood, the percentage of α-Syn-positive lymphocytes and monocytes were not statistically different between study groups. Moreover, the use of systemic steroids did not affect α-Syn positivity in MS-relapse patients. Finally, epidermic Langerhans cells did not stain positively for α-Syn. Overall, the levels of α-Syn positivity were lower in inflammatory relapse of RRMS patients when measured in peripheral tissues. We discuss the role of α-Syn levels in inflammation according to the obtained results.


Assuntos
Esclerose Múltipla Recidivante-Remitente/patologia , Pele/metabolismo , alfa-Sinucleína/metabolismo , Adulto , Antígenos CD/metabolismo , Biópsia , Células Sanguíneas/patologia , Células Sanguíneas/ultraestrutura , Nucléolo Celular/metabolismo , Nucléolo Celular/patologia , Estudos Transversais , Feminino , Citometria de Fluxo , Seguimentos , Células Gigantes de Langhans/metabolismo , Células Gigantes de Langhans/patologia , Humanos , Lectinas Tipo C/metabolismo , Masculino , Lectinas de Ligação a Manose/metabolismo , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Projetos Piloto , Pele/efeitos dos fármacos , Estatísticas não Paramétricas , Esteroides/uso terapêutico , Adulto Jovem , alfa-Sinucleína/sangue
14.
ACS Chem Neurosci ; 10(1): 323-336, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30141907

RESUMO

Worldwide, every year there is an increase in the number of people exposed to inorganic arsenic (iAs) via drinking water. Human populations present impaired cognitive function as a result of prenatal and childhood iAs exposure, while studies in animal models demonstrate neurobehavioral deficits accompanied by neurotransmitter, protein, and enzyme alterations. Similar impairments have been observed in close association with Alzheimer's disease (AD). In order to determine whether iAs promotes the pathophysiological progress of AD, we used the 3xTgAD mouse model. Mice were exposed to iAs in drinking water from gestation until 6 months (As-3xTgAD group) and compared with control animals without arsenic (3xTgAD group). We investigated the behavior phenotype on a test battery (circadian rhythm, locomotor behavior, Morris water maze, and contextual fear conditioning). Adenosine triphosphate (ATP), reactive oxygen species, lipid peroxidation, and respiration rates of mitochondria were evaluated, antioxidant components were detected by immunoblots, and immunohistochemical studies were performed to reveal AD markers. As-3xTgAD displayed alterations in their circadian rhythm and exhibited longer freezing time and escape latencies compared to the control group. The bioenergetic profile revealed decreased ATP levels accompanied by the decline of complex I, and an oxidant state in the hippocampus. On the other hand, the cortex showed no changes of oxidant stress and complex I; however, the antioxidant response was increased. Higher immunopositivity to amyloid isoforms and to phosphorylated tau was observed in frontal cortex and hippocampus of exposed animals. In conclusion, mitochondrial dysfunction may be one of the triggering factors through which chronic iAs exposure exacerbates brain AD-like pathology.


Assuntos
Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Arsênio/toxicidade , Metabolismo Energético/fisiologia , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Proteínas tau/genética
15.
Behav Brain Res ; 366: 108-117, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-30898683

RESUMO

Nitric oxide (NO) plays a leading role in learning and memory processes. Previously, we showed its ability to modify the deleterious effect of immunotoxin 192 IgG-saporin (192-IgG-SAP) in the cholinergic system. The aim of this study was to analyze the potential of a NO donor (molsidomine, MOLS) to prevent the recognition memory deficits resulting from the septal cholinergic denervation by 192 IgG-SAP in rats. Quantification of neuronal and endothelial nitric oxide synthase (nNOS and eNOS, respectively) expression was evaluated in striatum, prefrontal cortex, and hippocampus. In addition, a choline acetyltransferase immunohistochemical analysis was performed in medial septum and assessed the effect of MOLS treatment on the spatial working memory of rats through a recognition memory test. Results showed that 192-IgG-SAP reduced the immunoreactivity of cholinergic septal neurons (41%), compared with PBS-receiving control rats (p < 0.05). Treatment with MOLS alone failed to antagonize the septal neuron population loss but prevented the progressive abnormal morphological changes of neurons. Those animals exposed to 192-IgG-SAP immunotoxin exhibited a reduction of cortical nNOS expression against the control group, whereas expression was enhanced in the 192-IgG-SAP + MOLS group. The most relevant finding was the recovering of the discrimination index exhibited by the 192-IgG-SAP + MOLS group. When compared with the rats exposed to the 192-IgG-SAP immunotoxin, they reached values similar to those observed in the PBS group. Our results show that although MOLS failed to block the cholinergic neurons loss induced by 192-IgG-SAP, it avoided the neuronal damage progression.


Assuntos
Transtornos da Memória/tratamento farmacológico , Molsidomina/farmacologia , Reconhecimento Psicológico/efeitos dos fármacos , Acetilcolina/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Molsidomina/metabolismo , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Ratos , Ratos Wistar , Saporinas/farmacologia , Percepção Visual/efeitos dos fármacos
16.
Toxicology ; 235(1-2): 73-82, 2007 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-17420081

RESUMO

Recent advances in the knowledge of the cellular effects of arsenic have provided insights into the molecular mechanisms of arsenic-associated carcinogenesis, immunotoxicity and cardiovascular disease. In the present experiments we tested the hypothesis that the arrival of arsenic to the gastrointestinal (GI) tract is detected by the gut-brain axis, which includes hindbrain and forebrain nuclei activated by GI stimulation. As a marker of neuronal activation we measured Fos expression using immunohistochemistry. Because Fos expression in these nuclei is closely linked to the development of conditioned flavor aversion (CFA) we also tested the effect of arsenic on CFA. Our experiments indicate that arsenic ingestion is readily detected by the brain, as shown by increased Fos expression after oral administration of arsenic. Furthermore, the vagus nerve, which supplies information from the GI tract to the brain, is not involved in this response because a complete subdiaphragmatic vagotomy did not reduce the effect of arsenic on brain Fos expression, but enhanced this response. In parallel, arsenic ingestion is associated with a robust, dose-dependent CFA, which started at doses as low as 0.1 mg/kg body weight. In summary, these data indicate that arsenic given by oral administration is detected by the brain in low concentrations, and activates specific nuclei, which might trigger behavioral responses, such as CFA.


Assuntos
Arsênio/toxicidade , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Paladar/efeitos dos fármacos , Administração Oral , Animais , Arsênio/administração & dosagem , Encéfalo/metabolismo , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Relação Dose-Resposta a Droga , Extinção Psicológica/efeitos dos fármacos , Feminino , Trato Gastrointestinal/inervação , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Fatores de Tempo , Vagotomia , Nervo Vago/cirurgia
17.
Front Neurosci ; 11: 495, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28936161

RESUMO

Since the tau protein is closely involved in the physiopathology of Alzheimer's disease (AD), studying its behavior in cellular models might lead to new insights on understanding this devastating disease at molecular levels. In the present study, primary cultures of human fibroblasts were established and used to determine the expression and localization of the tau protein in distinct phosphorylation states in both untransfected and tau gene-transfected cells subjected to oxidative stress. Higher immunopositivity to phospho-tau was observed in cell nuclei in response to oxidative stress, while the levels of total tau in the cytosol remained unchanged. These findings were observed in both untransfected cells and those transfected with the tau gene. The present work represents a useful model for studying the physiopathology of AD at the cellular level in terms of tau protein implications.

18.
Front Neurol ; 8: 554, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29081764

RESUMO

Neurodegenerative diseases are characterized by the presence of abnormal aggregates of proteins in brain tissue. Among them, the presence of aggregates of phosphorylated Tau protein (p-Tau) is the hallmark of Alzheimer's disease (AD) and other major neurodegenerative disorders such as corticobasal degeneration and frontotemporal dementia among others. Although Tau protein has previously been assumed to be exclusive to the central nervous system, it is also found in peripheral tissues. The purpose of this study was to determine whether there is a differential Tau expression in oral mucosa cells according to cognitive impairment. Eighty-one subjects were enrolled in the study and classified per Mini-Mental State Examination test score into control, mild cognitive impairment (MCI), and severe cognitive impairment (SCI) groups. Immunocytochemistry and immunofluorescence revealed the presence of Tau and four p-Tau forms in the cytoplasm and nucleus of oral mucosa cells. More positivity was present in subjects with cognitive impairment than in control subjects, both in the nucleus and cytoplasm, in a speckle pattern. The mRNA expression of Tau by quantitative real-time polymerase chain reaction was higher in SCI as compared with the control group (P < 0.01). A significantly higher percentage of immunopositive cells in the SCI group was found via flow cytometry in comparison to controls and the MCI group (P < 0.01). These findings demonstrate the higher presence of p-Tau and Tau transcript in the oral mucosa of cognitively impaired subjects when compared with healthy subjects. The feasibility of p-Tau quantification by flow cytometry supports the prospective analysis of oral mucosa as a support tool for screening of proteinopathies in cognitively impaired patients.

19.
Mov Disord Clin Pract ; 4(5): 724-732, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30363411

RESUMO

BACKGROUND: The misfolding and prion-like propagation of the protein α-synuclein (α-syn) is the leading molecular signature in Parkinson's disease (PD). There is a significant coincidence of PD and melanoma that may suggest a shared pathophysiology. This study compared the presence of α-syn in neural crest-derived tissues, such as nevi, melanoma, skin tags, and skin biopsies from patients with PD and healthy controls. METHODS: Biopsies from participants with PD were obtained from patients from a tertiary referral center for dermatology and neurology in Mexico and a private dermatopathology center in Florida between January 2015 and March 2016. Biopsies from 7 patients with melanoma, 15 with nevi, 9 with skin tags, 8 with PD, and 9 skin biopsies from healthy volunteers were analyzed for immunohistochemical determination of α-syn and tyrosinase. All analyses were performed by pathologists who were blinded with respect to the clinical diagnosis. RESULTS: In healthy controls, positive α-syn status was restricted to scattered cells in the basal layer of the epidermis and accounted for 1 ± 0.8% of the analyzed area. In patients with PD, there was increased staining for α-syn PD (3.3 ± 2.3%), with a higher percentage of positive cells in nevi (7.7 ± 5.5%) and melanoma (13.6 ± 3.5%). There was no increased staining in skin tags compared with healthy controls. CONCLUSION: Patients with PD and melanoma have increased staining for α-syn in their skin. The authors propose that neurons and melanocytes, both derived from neuroectodermal cells, may share protein synthesis and regulation pathways that become dysfunctional in PD and melanoma.

20.
Ann Clin Transl Neurol ; 3(3): 191-9, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27042679

RESUMO

OBJECTIVE: This study characterizes the expression of tau (p-tau) and α-synuclein (α-syn) by immunohistochemistry in the skin of three different populations: healthy control (HC), Parkinson disease (PD), and progressive supranuclear paralysis (PSP) subjects, with the purpose of finding a biomarker that could differentiate between subjects with PD and PSP. MATERIAL AND METHODS: We evaluated the presence of p-tau and α-syn in a pilot study in the skin of three distinct groups of patients: 17 healthy subjects, 17 patients with PD, and 10 patients with PSP. Four millimeters punch biopsies were obtained from the occipital area and analyzed by immunohistochemistry using antibodies against α-syn and phosphorylated species of tau. PHF (paired helical filaments) antibody identifies p-tau in both normal and pathological conditions and AT8 recognizes p-tau characteristic of pathological conditions. Differences between the three groups were assessed by quantification of immunopositive areas in the epidermis. RESULTS: The immunopositivity pattern of p-tau and α-syn was significantly different among the three groups. Healthy subjects showed minimal staining using AT8 and α-syn. The PD group showed significantly higher α-syn and AT8 immunopositivity, while the PSP group only expressed higher AT8 immunopositivity than HCs. CONCLUSION: These data suggest that the skin reflects brain pathology. Therefore, immunohistochemical analysis of p-tau and α-syn in the skin can be useful for further characterization of PD and PSP.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa