Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(24): eado5362, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38865464

RESUMO

Spontaneously occurred electrostatic breakdown releases enormous energy, but harnessing the energy remains a notable challenge due to its irregularity and instantaneity. Here, we propose a revolutionary method that effectively harvests the energy of dynamic interfacial electrostatic breakdown by simply imbedding a conductive wire (diameter, 25 micrometers) beneath dielectric materials to regulate the originally chaotic and distributed electrostatic energy resulted from contact electrification into aggregation, effectively transforming mechanical energy into electricity. A point-charge physical model is proposed to explain the power generation process and output characteristics, guide structural design, and enhance output performance. Furthermore, a quantified triboelectric series including 72 dielectric material pairs is established for materials choice and optimization. In addition, a high voltage of over 10 kilovolts is achieved using polytetrafluoroethylene and polyethylene terephthalate. This work opens a door for effectively using electrostatic energy, offering promising applications ranging from novel high-voltage power sources, smart clothing, and internet of things.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa