Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Sci Food Agric ; 102(8): 3107-3118, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34786708

RESUMO

BACKGROUND: Probiotics are defined as microorganisms that can exert health benefits for the host. Among the recognized probiotics, Lactobacillus paracasei are one of the most frequently used probiotics in humans. The L. paracasei strain M11-4, isolated from fermented rice (which could ferment soymilk within a short curd time) and fermented soymilk presented high viability, acceptable flavor, and antioxidant activity, which revealed that the strain maybe have a potential antioxidant value. Therefore, it is necessary to further explore the antioxidant activity of L. paracasei strain M11-4. RESULTS: The radical scavenging activities, lipid peroxidation inhibition, and reducing power of L. paracasei M11-4 were the highest in the fermentation culture without cells, whereas the activities of other antioxidant enzymes of L. paracasei M11-4 were high in the cell-free extract and bacterial suspension. Moreover, L. paracasei M11-4 exerted its antioxidant effect by upregulating the gene expression of its antioxidant enzymes - the thioredoxin and glutathione systems - when hydrogen peroxide existed. Supplementation of rats with L. paracasei M11-4 effectively alleviated d-galactose-induced oxidative damage in the liver and serum and prevented d-galactose-induced changes to intestinal microbiota. Supplementation with L. paracasei M11-4 also reduced the elevated expression of thioredoxin and glutathione system genes induced by d-galactose. CONCLUSION: L. paracasei M11-4 has good antioxidant properties both in vitro and in vivo, and its antioxidant mechanism was studied at the molecular level. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes , Lacticaseibacillus paracasei , Oryza , Probióticos , Animais , Antioxidantes/farmacologia , Alimentos Fermentados/microbiologia , Galactose/metabolismo , Glutationa/metabolismo , Lacticaseibacillus paracasei/metabolismo , Oryza/microbiologia , Probióticos/farmacologia , Ratos , Tiorredoxinas/metabolismo
2.
Molecules ; 26(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806149

RESUMO

Bacillus subtilis SH21 was observed to produce an antifungal protein that inhibited the growth of F. solani. To purify this protein, ammonium sulfate precipitation, gel filtration chromatography, and ion-exchange chromatography were used. The purity of the purified product was 91.33% according to high-performance liquid chromatography results. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that the molecular weight of the protein is 30.72 kDa. The results of the LC-MS/MS analysis and a subsequent sequence-database search indicated that this protein was a chitosanase, and thus, we named it chitosanase SH21. Scanning and transmission electron microscopy revealed that chitosanase SH21 appeared to inhibit the growth of F. solani by causing hyphal ablation, distortion, or abnormalities, and cell-wall depression. The minimum inhibitory concentration of chitosanase SH21 against F. solani was 68 µg/mL. Subsequently, the corresponding gene was cloned and sequenced, and sequence analysis indicated an open reading frame of 831 bp. The predicted secondary structure indicated that chitosanase SH21 has a typical a-helix from the glycoside hydrolase (GH) 46 family. The tertiary structure shared 40% similarity with that of Streptomyces sp. N174. This study provides a theoretical basis for a topical cream against fungal infections in agriculture and a selection marker on fungi.


Assuntos
Antifúngicos , Bacillus subtilis/enzimologia , Proteínas de Bactérias , Fusarium/crescimento & desenvolvimento , Glicosídeo Hidrolases , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/farmacologia
3.
J Sci Food Agric ; 100(8): 3308-3318, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32108348

RESUMO

BACKGROUND: Probiotics are defined as microorganisms that can exert health benefits for the host. Among the recognized probiotics, Bifidobacterium are the most frequently used probiotics in humans. The aim of this study was to evaluate the antidiabetic activity of Bifidobacterium strains isolated from breastfed infant faeces, both in vitro, using the Caco-2 monolayer transwell model, and in vivo, using a mice model of impaired glucose tolerance induced by a high-fat diet (HFD). RESULTS: The cell-free supernatant of Bifidobacterium lactis A12 showed better inhibitory activity of α-glucosidase and inhibited the glucose absorption and transport than B. lactis BB12, which is a typical probiotic with antidiabetic capabilities. B. lactis A12 improved the impaired glucose intolerance, restored islet function and morphology with insulin resistance induced by the HFD in C57BL/6J mice. Furthermore, in small intestine tissues, the cell-free supernatant of B. lactis A12 decreased the messenger RNA expressions of sucrase-isomaltase, live B. lactis A12 cells decreased glucose transporters 2. B. lactis A12 significantly stimulated the glucagon like peptide-1 (GLP-1) secretion and upregulated proglucagon messenger RNA levels. CONCLUSION: B. lactis A12 protect against the deleterious effects of HFD-induced diabetes by inhibiting the utilization, absorption, and transport of glucose by intestinal epithelial cells and promoting the expression and secretion of GLP-1. © 2020 Society of Chemical Industry.


Assuntos
Bifidobacterium/metabolismo , Fezes/microbiologia , Intolerância à Glucose/prevenção & controle , Glucose/metabolismo , Incretinas/metabolismo , Probióticos/administração & dosagem , Animais , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Aleitamento Materno , Dieta Hiperlipídica , Intolerância à Glucose/metabolismo , Intolerância à Glucose/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Appl Microbiol Biotechnol ; 101(14): 5639-5644, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28432439

RESUMO

Creatine kinase isoform CK-MB has been widely applied as a biomarker of myocardial injury. While a variety of methods have been used to measure CK-MB activity or mass in clinical laboratories, a CK-MB standard is needed to eliminate between-method bias. Because the in vitro expression of human creatine kinase generates three isoenzymes, CK-MM, CK-MB, and CK-BB, it is important to establish an effective method to purify the isoform CK-MB from the mixture. In this study, we aimed at using tandem affinity purification (TAP) to purify recombinant CK-MB protein and evaluate its value in clinical laboratories. After the optimized sequence coding CK-M and CK-B were synthesized, they were combined with TAP tags (6His and SBP) and inserted into a pRSFDuet vector; then, the constructed 6His-CK-M-SBP-CK-B-pRSF plasmid was transformed into Escherichia coli BL21 (DE3) for expression. After TAP, we obtained purified CK-MB protein. We also did recovery testing using the engineered CK-MB and standard CK-MB (Randox) at different concentrations, and the results suggested that the engineered CK-MB could be used as the reference material. Moreover, the stability study of recombinant CK-MB showed high stability during long-term storage at -80 °C. In conclusion, the TAP-purified recombinant CK-MB protein may be a much better and cheaper standard or reference material for clinical laboratories.


Assuntos
Cromatografia de Afinidade/métodos , Creatina Quinase Forma MB/genética , Creatina Quinase Forma MB/metabolismo , Escherichia coli/genética , Cromatografia de Afinidade/economia , Ensaios Enzimáticos Clínicos , Creatina Quinase Forma MB/isolamento & purificação , Estabilidade Enzimática , Escherichia coli/enzimologia , Humanos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Padrões de Referência
5.
Med Sci Monit ; 23: 2226-2231, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28490726

RESUMO

BACKGROUND Chronic heart failure (CHF) is a leading cause of death worldwide. A long noncoding RNA (lncRNA) named urothelial carcinoma associated 1 (UCA1) is important in multiple diseases. However, the role of UCA1 in CHF is still unknown. Our study investigated whether UCA1 could be applied as an ideal marker to diagnose and evaluate prognosis in CHF. MATERIAL AND METHODS Total plasma RNA was extracted from 67 CHF patients and 67 controls. Quantitative real-time polymerase chain reaction was used to determine the plasma level of UCA1. Correlations between UCA1 and clinical parameters were analyzed by Pearson correlation. Receiver operating characteristic curves (ROC) were obtained to analyze the predictive power of UCA1 and BNP for CHF. Kaplan-Meier survival curves were used to evaluate prognosis of CHF within 1 year. RESULTS There was no significant difference in elementary data between CHF and controls. Plasma UCA1 was much higher in CHF patients compared with controls. Plasma UCA1 was positively and negatively correlated with brain natriuretic peptide (BNP) and left ventricle ejection fraction (LVEF), respectively. Plasma UCA1 diagnosed CHF with a diagnostic power of 0.89 and a sensitivity and specificity of 100% [95% CI (0.9464-1)] and 76.12% [95%CI (0.6414-0.8569)] (P<0.05), respectively. CHF patients with higher plasma UCA1 had a lower survival rate than those with a lower level, and survival rate predicted by UCA1 had a similar tendency with BNP. However, there was no significant difference between these 2 markers in predicting the prognosis of CHF (P>0.05). CONCLUSIONS Plasma UCA1 might be an excellent indicator to diagnose CHF and it might predict poor outcomes of CHF.


Assuntos
Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/genética , RNA Longo não Codificante/sangue , Idoso , Estudos de Casos e Controles , Doença Crônica , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Peptídeo Natriurético Encefálico/sangue , Prognóstico , RNA Longo não Codificante/genética , Curva ROC , Volume Sistólico , Taxa de Sobrevida
6.
Curr Microbiol ; 73(5): 660-667, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27485629

RESUMO

The underlying mechanisms imparting the growth phase-dependent acid tolerance have not been extensively investigated. In this study, we compared the acid resistance of the Bifidobacterium longum strain BBMN68 from different growth phases at lethal pH values (pH 2.5, 3.0, and 3.5), and analyzed the activity of H(+)-ATPase, the composition of fatty acids, and the mRNA abundance of ffh, uvrA, recA, lexA, groES, and dnaK in cells from different growth phases. The results indicated that the survival rates of cells from early stationary (ES) and late stationary (LS) growth phases at lethal pH values were significantly higher than those of exponential growth phase cells. Our findings indicated that by inducing a continuously auto-acidizing environment during cell growth, the acid resistance of ES and LS cells was strengthened. The higher activity of H(+)-ATPase, the decrease in unsaturated fatty acids, and the increased expression of genes involved in DNA repair and protein protection in the cells in stationary growth phase were all implicated in the significantly increased acid resistance of ES and LS cells compared with exponential growth phase cells of the B. longum strain BBMN68.


Assuntos
Ácidos/metabolismo , Bifidobacterium longum/crescimento & desenvolvimento , Bifidobacterium longum/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium longum/genética , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Viabilidade Microbiana
7.
BMC Microbiol ; 15: 54, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25887661

RESUMO

BACKGROUND: Bifidobacteria are key commensals in human gut, and their abundance is associated with the health of their hosts. Although they are dominant in infant gut, their number becomes lower in adult gut. The changes of the diet are considered to be main reason for this difference. Large amounts of whole-genomic sequence data of bifidobacteria make it possible to elucidate the genetic interpretation of their adaptation to the nutrient environment. Among the nutrients in human gut, starch is a highly fermentable substrate and can exert beneficial effects by increasing bifidobacteria and/or being fermented to short chain fatty acids. RESULTS: In order to determine the potential substrate preference of bifidobacteria, we compared the glycoside hydrolase (GH) profiles of a pooled-bifidobacterial genome (PBG) with a representative microbiome (RM) of the human gut. In bifidobacterial genomes, only 15% of GHs contained signal peptides, suggesting their weakness in utilization of complex carbohydrate, such as plant cell wall polysaccharides. However, compared with other intestinal bacteria, bifidobacteiral genomes encoded more GH genes for degrading starch and starch hydrolysates, indicating that they have genetic advantages in utilizing these substrates. Bifidobacterium longum subsp. longum BBMN68 isolated from centenarian's faeces was used as a model strain to further investigate the carbohydrate utilization. The pathway for degrading starch and starch hydrolysates was the only complete pathway for complex carbohydrates in human gut. It is noteworthy that all of the GH genes for degrading starch and starch hydrolysates in the BBMN68 genome were conserved in all studied bifidobacterial strains. The in silico analyses of BBMN68 were further confirmed by growth experiments, proteomic and real-time quantitative PCR (RT-PCR) analyses. CONCLUSIONS: Our results demonstrated that starch and starch hydrolysates were the most universal and favorable carbon sources for bifidobacteria. The low amount of these carbon sources in adult intestine was speculated to contribute to the low relative abundance of bifidobacteria.


Assuntos
Bifidobacterium/metabolismo , Carbono/metabolismo , Trato Gastrointestinal/microbiologia , Amido/metabolismo , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Metabolismo dos Carboidratos , Humanos , Hidrólise , Redes e Vias Metabólicas/genética
8.
Microbiol Immunol ; 59(5): 268-76, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25707300

RESUMO

Lactobacillus casei strain Shirota (LcS) is a widely used probiotic strain with health benefits. In this study, the survival of LcS in the intestines of healthy Chinese adults was assessed and the effects of LcS on stool consistency, stool SCFAs and intestinal microbiota evaluated. Subjects consumed 100 mL per day of a probiotic beverage containing 1.0 × 10(8) CFU/mL of LcS for 14 days. LcS were enumerated using a culture method and the colony identity confirmed by ELISA. Fourteen days after ingestion, the amount of LcS recovered from fecal samples was between 6.86 ± 0.80 and 7.17 ± 0.57 Log10 CFU/g of feces (mean ± SD). The intestinal microbiotas were analyzed by denaturing gradient gel electrophoresis. Principal component analysis showed that consuming LcS significantly changed fecal microbiota profiles. According to redundancy analysis, the amounts of 25 bacterial strains were significantly correlated with LcS intake (P < 0.05), 11 of them positively and fourteen negatively. Concentrations of acetic acid and propionic acid in feces were significantly lower during the ingestion period than during the baseline period (P < 0.05). These results confirm that LcS can survive passage through the gastrointestinal tract of Chinese people; however, they were found to have little ability to persist once their consumption had ceased. Furthermore, consumption of probiotic beverages containing LcS can modulate the composition of the intestinal microbiota on a long-term basis, resulting in decreased concentrations of SCFAs in the gut.


Assuntos
Voluntários Saudáveis , Intestinos/microbiologia , Lacticaseibacillus casei/fisiologia , Viabilidade Microbiana , Probióticos/administração & dosagem , Ácido Acético/análise , Adulto , Povo Asiático , Biota , Contagem de Colônia Microbiana , Eletroforese em Gel de Gradiente Desnaturante , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Masculino , Propionatos/análise , Adulto Jovem
9.
Cell Physiol Biochem ; 31(4-5): 718-27, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23711497

RESUMO

BACKGROUND/AIMS: The aim of this study was to elucidate the effects of glucose restriction (GR) on cell replicative senescence in vitro by human diploid fibroblasts IMR-90. METHODS: IMR-90 cells were cultured under 40, 60% GR or high glucose medium and biomarkers of cell senescence were compared with cells cultured in normal glucose medium (5.5 mM glucose). The impact of different concentrations of glucose and initial passages on cell replicative senescence were assessed by cell survival days, cumulative population doublings (PD), cell proliferation rate (CPR) and SA-ß-gal site-stain. RESULTS: When compared with control cells, mean survival days and lifespan of IMR-90 were increased 16.7% and 11.4% by 40% GR (3.3 mM glucose). However, mean survival days and lifespan of IMR-90 were decreased 31.0% and 26.9% by HG treatment (25.0 mM glucose). The effects on survival days of IMR-90 were associated not only with different glucose concentrations but also with initial passages. The CPR of IMR-90 could be retarded by GR culture and this effect was especially associated with GR degree. It was 87% positive cells of SA-ß-gal in aging stages and more slim and fibrous cells were observed in 40% GR group than NG group onset from 26 PD. CONCLUSION: Mean survival days and lifespan of human diploid fibroblasts IMR-90 were extended by glucose restriction. The higher GR levels, the earlier onset of GR, the larger benefits on extending survival days of IMR-90 could be observed. Slowing down cell proliferation by GR increased the number of cell survival days, an effect associated with GR levels. High glucose induced premature senescence of IMR-90 when started from any passages.


Assuntos
Senescência Celular/efeitos dos fármacos , Glucose/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diploide , Fibroblastos/citologia , Fibroblastos/patologia , Humanos
10.
Cell Physiol Biochem ; 32(3): 719-27, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24080825

RESUMO

BACKGROUND/AIMS: Insulin resistance in type 2 diabetes results from a combination of hyperglycemia and elevated free fatty acid (FFA) concentrations. However, the individual effects of glucotoxicity and lipotoxicity on cell function have not been determined. METHODS: To compare the effects of increased FFAs and glucose levels on the PARP-NAD-SIRT1 pathway, which modulates insulin sensitivity, we cultured HepG2 hepatocytes with 300 or 500 µM oleic acid (OA) or 30 mM glucose for 1-4 days. PARP activity, NAD level, SIRT1 expression and insulin receptor phosphorylation were determined. RESULTS: PARP activity was higher while NAD level and SIRT1 expression were lower in OA-treated cells than in control cells. Insulin receptor phosphorylation in response to insulin stimulation was attenuated under OA stimulation. Compared to glucose, OA produced a more rapid effect on the PARP-NAD-SIRT1 pathway in HepG2 cells. The reduction in SIRT1 expression and insulin receptor phosphorylation was similar in cells treated with 500 µM OA for 1 day and those treated with 30 mM glucose for 4 days. In addition to PARP activation, the LXRα activator T0901317 also affected SIRT1 expression. CONCLUSION: FFAs modulated cellular function through multiple ways, and induced more rapid and more potent cytotoxicity than glucose.


Assuntos
Glucose/toxicidade , NAD/metabolismo , Ácido Oleico/toxicidade , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Hidrocarbonetos Fluorados/farmacologia , Insulina/metabolismo , Receptores X do Fígado , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptor de Insulina/metabolismo , Sirtuína 1/genética , Sulfonamidas/farmacologia
11.
Foods ; 12(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36673428

RESUMO

Bifidobacterium animalis A12 was used for the development of fermented sausage. The growth activity, tolerance, and enzyme activity of B. animalis A12 and its contribution to the texture and flavour of fermented sausages were evaluated. Additionally, the sensory texture, flavour components, and amino acid nutrients during the fermentation process were assessed. B. animalis had high tolerance to NaCl and nitrite, and B. animalis A12 had protease and lipase activities. The pH value of sausage fermented with B. animalis A12 was lower than that of sausage fermented without any fermentation strain. Hexanal, heptanal, decanal, cis-2-decanal, and 4-methoxy-benzaldehyde are the unique aldehydes flavour components of fermented sausages in the A12 group. The highest content of volatile flavour substances and amino acids, and the color and texture characteristics of fermented sausage in the experimental group at 18 h were better than those at other times. These results suggest that B. animalis A12 has the potential to be used as a starter culture for im-proving flavour and texture in fermented sausage.

12.
Food Funct ; 14(4): 2045-2058, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36723265

RESUMO

Live and heat-killed Bifidobacterium has been proven to have anti-inflammatory and antioxidant effects. In this study, we evaluated the effects of live and heat-killed Bifidobacterium animalis J-12 (J-12) on the oral ulceration of LVG golden Syrian hamsters after buccal membrane injection with methyl viologen dichloride. Results showed that interleukin-1ß, glutathione, and malondialdehyde in serum were downregulated by the gavage of live and heat-killed J-12 bacteria. The J-12 live and heat-killed bacteria can reduce the expression of matrix metalloproteinase-9 by reducing the expression of nuclear factor kappa-B, thus reducing the expression of anti-inflammatory factors lipoxin A4 and prostaglandin E2. Reducing the expression of caspase-3 and adenosine diphosphate ribose polymerase resulted in a reduction of ulcer tissue DNA damage. In addition, regulating the structure of the intestinal flora prevented the process of oral ulcer formation. This study shows that J-12 can reduce the risk of oral ulcer formation while also having a positive effect on inhibiting existing oral ulcer growth.


Assuntos
Bifidobacterium animalis , Microbioma Gastrointestinal , Úlceras Orais , Cricetinae , Animais , Humanos , Mesocricetus , Temperatura Alta , Anti-Inflamatórios , Bactérias
13.
Foods ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36765968

RESUMO

Excessive drinking can significantly damage people's health and well-being. Although some lactic acid bacterial strains have been previously shown to alleviate the symptoms of alcohol injury, the mechanism underlying these effects remains unclear. The aim of this study was to establish an alcohol injury model and examine the protective effect and mechanism of B. animalis A12 and L. salivarius M18-6. The results showed that A12 freeze-dried powder could maintain the survival rate of mice with alcohol injury at 100%. Compared with Alco group, L. salivarius M18-6 dead cell improved the survival rate of mice, attenuated liver steatosis, and significantly down-regulated serum Alanine transaminase (ALT) level; at the same time, it activated keap1-Nrf2 signaling pathway and up-regulated Superoxide dismutase (SOD), it protects mouse liver cells from oxidative stress induced by alcohol injury. In addition, B. animalis A12 can reduce the stress response to short-term alcohol intake and improve the ability of anti-oxidative stress by upregulating the level of isobutyric acid, reducing the level of keap1 protein in the liver of mice and upregulating the expression of thioredoxin genes (Txnrd1, Txnrd3, Txn1). Taken together, the results showed that B. animalis A12 and L. salivarius M18-6 alleviate alcohol injury in mice through keap1-Nrf2 signaling pathway and thioredoxin system.

14.
Nutrients ; 15(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37960165

RESUMO

Colorectal cancer (CRC) is a significant health concern and is the third most commonly diagnosed and second deadliest cancer worldwide. CRC has been steadily increasing in developing countries owing to factors such as aging and epidemics. Despite extensive research, the exact pathogenesis of CRC remains unclear, and its causes are complex and variable. Numerous in vitro, animal, and clinical trials have demonstrated the efficacy of probiotics such as Lactobacillus plantarum in reversing the adverse outcomes of CRC. These findings suggest that probiotics play vital roles in the prevention, adjuvant treatment, and prognosis of CRC. In this study, we constructed a mouse model of CRC using an intraperitoneal injection of azomethane combined with dextran sodium sulfate, while administering 5-fluorouracil as well as high- and low-doses of L. plantarum Zhang-LL live or heat-killed strains. Weight changes and disease activity indices were recorded during feeding, and the number of polyps and colon length were measured after euthanasia. HE staining was used to observe the histopathological changes in the colons of mice, and ELISA was used to detect the expression levels of IL-1ß, TNF-α, and IFN-γ in serum. To investigate the specific mechanisms involved in alleviating CRC progression, gut microbial alterations were investigated using 16S rRNA amplicon sequencing and non-targeted metabolomics, and changes in genes related to CRC were assessed using eukaryotic transcriptomics. The results showed that both viable and heat-killed strains of L. plantarum Zhang-LL in high doses significantly inhibited tumorigenesis, colon shortening, adverse inflammatory reactions, intestinal tissue damage, and pro-inflammatory factor expression upregulation. Specifically, in the gut microbiota, the abundance of the dominant flora Acutalibacter muris and Lactobacillus johnsonii was regulated, PGE2 expression was significantly reduced, the arachidonic acid metabolism pathway was inhibited, and CD22-mediated B-cell receptor regulation-related gene expression was upregulated. This study showed that L. plantarum Zhang-LL live or heat-inactivated strains alleviated CRC progression by reducing the abundance of potentially pathogenic bacteria, increasing the abundance of beneficial commensal bacteria, mediating the arachidonic acid metabolism pathway, and improving host immunogenicity.


Assuntos
Colite , Lactobacillus plantarum , Probióticos , Animais , Camundongos , Lactobacillus plantarum/fisiologia , Ácido Araquidônico/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Colite/induzido quimicamente , Colite/terapia , Colite/microbiologia , Transformação Celular Neoplásica , Carcinogênese , Modelos Animais de Doenças , Sulfato de Dextrana
15.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37291705

RESUMO

Salmonella is one of the most widely distributed and harmful food-borne pathogens; thus, the rapid detection of viable Salmonella is important for ensuring food safety. In this study, a rapid visual strategy based on loop-mediated isothermal amplification (LAMP) with the addition of thermal inorganic pyrophosphatase and linked with an ammonium molybdate chromogenic buffer was established to detect Salmonella. Specific primers were designed based on the phoP gene of Salmonella spp. The pyrophosphatase concentration, LAMP time, addition of ammonium molybdate chromogenic buffer, and color reaction time were optimized. Based on the optimal conditions, the sensitivity and specificity of the method were examined. In addition, the ability to detect actual samples was verified using apple juice containing Salmonella. LAMP was performed at 65°C for 45 min in the presence of thermal inorganic pyrophosphatase at a final concentration of 4 U ml-1, and 20 µl of the LAMP product was reacted with 50 µl of phosphate chromogenic buffer at 25°C for 15 min. According to our results, the limit of detection of the LAMP assay for viable Salmonella was 1.83 × 102 CFU per reaction, and nonspecific amplification was not observed. The detection rates of Salmonella Typhimurium with different concentrations in apple juice were 89.11%-94.80%, which verifies that the visual detection strategy is suitable for actual sample detection.


Assuntos
Pirofosfatase Inorgânica , Pirofosfatases , Técnicas de Amplificação de Ácido Nucleico/métodos , Salmonella typhimurium/genética , Sensibilidade e Especificidade
16.
PLoS One ; 17(12): e0278869, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36508428

RESUMO

Shigella spp. and enteroinvasive Escherichia coli (EIEC) are widely distributed and can cause serious food-borne diseases for humans such as dysentery. Therefore, an efficient detection platform is needed to detect Shigella and EIEC quickly and sensitively. In this study, a method called recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD) was developed for rapid detection of Shigella and EIEC. RPA primers and LFD detection probes were designed for their shared virulence gene ipaH. Primers and probes were screened, and the primer concentration, and reaction time and temperature were optimized. According to the optimization results, the RPA reaction should be performed at 39°C, and when combined with LFD, it takes less than 25 min for detection with the naked eye. The developed RPA-LFD method specifically targets gene ipaH and has no cross-reactivity with other common food-borne pathogens. In addition, the minimum detection limit of RPA-LFD is 1.29×102 copies/µL. The detection of food sample showed that the RPA-LFD method was also verified for the detection of actual samples.


Assuntos
Recombinases , Shigella , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Escherichia coli/genética , Sensibilidade e Especificidade , Nucleotidiltransferases , Shigella/genética
17.
Front Microbiol ; 13: 1103600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687624

RESUMO

Plantaricin BM-1 is a class IIa bacteriocin produced by Lactobacillus plantarum BM-1 that has significant antimicrobial activity against food-borne bacteria. In this study, a cell proliferation assay and scanning electron microscopy were used to detect changes in the viability of SW480, Caco-2, and HCT-116 colorectal cancer cells treated with plantaricin BM-1. We found that plantaricin BM-1 significantly reduced the viability of all colorectal cancer cell lines tested, especially that of the SW480 cells. Scanning electron microscopy showed that plantaricin BM-1 treatment reduced the number of microvilli and slightly collapsed the morphology of SW480 cells. Fluorescence microscopy and flow cytometry demonstrated that plantaricin BM-1 induced apoptosis of SW480 cells in a concentration-dependent manner. Western blotting further showed that plantaricin BM-1-induced apoptosis of SW480 cells was mediated by the caspase pathway. Finally, transcriptomic analysis showed that 69 genes were differentially expressed after plantaricin BM-1 treatment (p < 0.05), of which 65 were downregulated and four were upregulated. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that expression levels of genes involved in the TNF, NF-κB, and MAPK signaling pathways, as well as functional categories such as microRNAs in cancer and transcriptional misregulation in cancer, were affected in SW480 cells following the treatment with plantaricin BM-1. In conclusion, plantaricin BM-1 induced death in SW480 cells via the caspase-dependent apoptosis pathway. Our study provides important information for further development of plantaricin BM-1 for potential applications in anti-colorectal cancer.

18.
Front Microbiol ; 13: 1071351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504793

RESUMO

Introduction: Plantaricin BM-1 is a class IIa bacteriocin produced by Lactobacillus plantarum BM-1 that exerts significant antibacterial activity against many foodborne bacteria. Studies have shown that class IIa bacteriocins inhibit Gram-positive bacteria via the mannose phosphotransferase system; however, their mechanism of action against Gram-negative bacteria remains unknown. In this study, we explored the mechanism through which the Rcs phosphorelay affects the sensitivity of Escherichia coli K12 cells to plantaricin BM-1. Methods and Results: The minimum inhibitory concentrations of plantaricin BM-1 against E. coli K12, E. coli JW5917 (rcsC mutant), E. coli JW2204 (rcsD mutant), and E. coli JW2205 (rcsB mutant) were 1.25, 0.59, 1.31, and 1.22 mg/ml, respectively. Growth curves showed that E. coli JW5917 sensitivity to plantaricin BM-1 increased to the same level as that of E. coli K12 after complementation. Meanwhile, scanning electron microscopy and transmission electron microscopy revealed that, under the action of plantaricin BM-1, the appearance of E. coli JW5917 cells did not significantly differ from that of E. coli K12 cells; however, cell contents were significantly reduced and plasmolysis and shrinkage were observed at both ends. Crystal violet staining and laser scanning confocal microscopy showed that biofilm formation was significantly reduced after rcsC mutation, while proteomic analysis identified 382 upregulated and 260 downregulated proteins in E. coli JW5917. In particular, rcsC mutation was found to affect the expression of proteins related to biofilm formation, with growth curve assays showing that the deletion of these proteins increased E. coli sensitivity to plantaricin BM-1. Discussion: Consequently, we speculated that the Rcs phosphorelay may regulate the sensitivity of E. coli to plantaricin BM-1 by affecting biofilm formation. This finding of class IIa bacteriocin against Gram-negative bacteria mechanism provides new insights.

19.
Front Microbiol ; 13: 874789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495665

RESUMO

Plantaricin BM-1, a class IIa bacteriocin produced by Lactiplantibacillus plantarum BM-1, exhibits significant antibacterial activity against many gram-positive and gram-negative bacteria. However, the mechanism underlying the action of class IIa bacteriocins against gram-negative bacteria remains to be explored. This study aimed to investigate the role of the BasS/BasR two-component system (TCS) in Escherichia coli (E. coli) K12 response to plantaricin BM-1. The IC50 values for plantaricin BM-1 in E. coli K12, basS mutant (E. coli JW4073), and basR mutant (E. coli JW4074) strains were found to be 10.85, 8.94, and 7.62 mg/mL, respectively. Growth curve experiments showed that mutations in the BasS/BasR TCS led to an increase in the sensitivity of E. coli K12 to plantaricin BM-1 and that after gene complementation, the complemented mutant strain regained its original sensitivity. Proteomic analysis showed that 100 and 26 proteins were upregulated and 62 and 58 proteins were downregulated in E. coli JW4073 and E. coli JW4074, respectively. These differential proteins, which exhibited different molecular functions and participated in different molecular pathways, were mainly concentrated in the cytoplasm. More specifically, mutations in basS and basR were found to affect the synthesis and metabolism of many substances in E. coli, including many important amino acids and enzymes involved in cellular activities. In addition, 14 proteins, including 8 proteins involved in the tricarboxylic acid (TCA) cycle, were found to be downregulated in both E. coli JW4073 and E. coli JW4074. Growth curve experiments showed that the deletion of these proteins could increase the sensitivity of E. coli to plantaricin BM-1. Therefore, we speculate that TCA pathway regulation may be an important mechanism by which the BasS/BasR TCS regulates the sensitivity of E. coli to plantaricin BM-1. This finding will facilitate the determination of the mechanism underlying the action of class IIa bacteriocins against gram-negative bacteria.

20.
Nutrients ; 15(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36615827

RESUMO

Bifidobacterium, a common probiotic, is widely used in the food industry. Hyperglycemia in pregnancy has become a common disease that impairs the health of the mother and can lead to adverse pregnancy outcomes, such as preeclampsia, macrosomia, fetal hyperinsulinemia, and perinatal death. Currently, Bifidobacterium has been shown to have the potential to mitigate glycolipid derangements. Therefore, the use of Bifidobacterium-based probiotics to interfere with hyperglycemia in pregnancy may be a promising therapeutic option. We aimed to determine the potential effects of Bifidobacterium animalis subsp. lactis J-12 (J-12) in high-fat diet (HFD)/streptozotocin (STZ)-induced rats with hyperglycemia in pregnancy (HIP) and respective fetuses. We observed that J-12 or insulin alone failed to significantly improve the fasting blood glucose (FBG) level and oral glucose tolerance; however, combining J-12 and insulin significantly reduced the FBG level during late pregnancy. Moreover, J-12 significantly decreased triglycerides and total cholesterol, relieved insulin and leptin resistance, activated adiponectin, and restored the morphology of the maternal pancreas and hepatic tissue of HIP-induced rats. Notably, J-12 ingestion ameliorated fetal physiological parameters and skeletal abnormalities. HIP-induced cardiac, renal, and hepatic damage in fetuses was significantly alleviated in the J-12-alone intake group, and it downregulated hippocampal mRNA expression of insulin receptor (InsR) and insulin-like growth factor-1 receptor (IGF-1R) and upregulated AKT mRNA on postnatal day 0, indicating that J-12 improved fetal neurological health. Furthermore, placental tissue damage in rats with HIP appeared to be in remission in the J-12 group. Upon exploring specific placental microbiota, we observed that J-12 affected the abundance of nine genera, positively correlating with FBG and leptin in rats and hippocampal mRNA levels of InsR and IGF-1R mRNA in the fetus, while negatively correlating with adiponectin in rats and hippocampal levels of AKT in the fetus. These results suggest that J-12 may affect the development of the fetal central nervous system by mediating placental microbiota via the regulation of maternal-related indicators. J-12 is a promising strategy for improving HIP and pregnancy outcomes.


Assuntos
Bifidobacterium animalis , Hiperglicemia , Insulinas , Ratos , Gravidez , Feminino , Animais , Resultado da Gravidez , Bifidobacterium animalis/metabolismo , Dieta Hiperlipídica/efeitos adversos , Leptina/metabolismo , Estreptozocina , Placenta/metabolismo , Adiponectina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hiperglicemia/metabolismo , Bifidobacterium/metabolismo , RNA Mensageiro/metabolismo , Insulinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa