Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Nat Chem Biol ; 19(12): 1524-1531, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37620399

RESUMO

Bio-refining lignocellulose could provide a sustainable supply of fuels and fine chemicals; however, the challenges associated with the co-utilization of xylose and glucose typically compromise the efficiency of lignocellulose conversion. Here we engineered the industrial yeast Ogataea polymorpha (Hansenula polymorpha) for lignocellulose biorefinery by facilitating the co-utilization of glucose and xylose to optimize the production of free fatty acids (FFAs) and 3-hydroxypropionic acid (3-HP) from lignocellulose. We rewired the central metabolism for the enhanced supply of acetyl-coenzyme A and nicotinamide adenine dinucleotide phosphate hydrogen, obtaining 30.0 g l-1 of FFAs from glucose, with productivity of up to 0.27 g l-1 h-1. Strengthening xylose uptake and catabolism promoted the synchronous utilization of glucose and xylose, which enabled the production of 38.2 g l-1 and 7.0 g l-1 FFAs from the glucose-xylose mixture and lignocellulosic hydrolysates, respectively. Finally, this efficient cell factory was metabolically transformed for 3-HP production with the highest titer of 79.6 g l-1 in fed-batch fermentation in mixed glucose and xylose.


Assuntos
Glucose , Xilose , Xilose/metabolismo , Glucose/metabolismo , Lignina , Fermentação , Engenharia Metabólica
2.
Crit Rev Biotechnol ; : 1-19, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266266

RESUMO

Acetyl-CoA is an intermediate metabolite in cellular central metabolism. It's a precursor for various valuable commercial products, including: terpenoids, fatty acids, and polyketides. With the advancement of metabolic and synthetic biology tools, microbial cell factories have been constructed for the efficient synthesis of acetyl-CoA and derivatives, with the Saccharomyces cerevisiae and Yarrowia lipolytica as two prominent chassis. This review summarized the recent developments in the biosynthetic pathways and metabolic engineering approaches for acetyl-CoA and its derivatives synthesis in these two yeasts. First, the metabolic routes involved in the biosynthesis of acetyl-CoA and derived products were outlined. Then, the advancements in metabolic engineering strategies for channeling acetyl-CoA toward the desired products were summarized, with particular emphasis on: enhancing metabolic flux in different organelles, refining precursor CoA synthesis, optimizing substrate utilization, and modifying protein acetylation level. Finally, future developments in advancing the metabolic engineering strategies for acetyl-CoA and related derivatives synthesis, including: reducing CO2 emissions, dynamically regulating metabolic pathways, and exploring the regulatory functions between acetyl-CoA levels and protein acetylation, are highlighted. This review provided new insights into regulating acetyl-CoA synthesis to create more effective microbial cell factories for bio-manufacturing.

3.
Biotechnol Bioeng ; 119(11): 3162-3177, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36030484

RESUMO

Bioconversion is being regarded as a promising way for lignin valorization because it enables funneling diverse lignin components into single compounds, overcoming the heterogeneity of lignin. Although numerous lignin-derived aromatic monomers have been funneled to target compounds in previous studies, the bioconversion of low-molecular-weight lignin (LMW-lignin) fragments, for example, lignin-derived dimers, has been rarely systematically studied, impeding further conversion of lignin. In this study, coculture systems were designed and developed to funnel multiple lignin-derived dimers to cis, cis-muconate and gallate by combining lignin-derived dimers cleavage bacterium Sphingobium sp. and monomers conversion bacterium Rhodococcus opacus. With the developed coculture systems, ß-O-4 type dimer guaiacylglycerol-ß-guaiacyl ether, 4-O-5 type dimer 4,4'-dihydroxydiphenyl ether, ß-5 type dimer balanophonin, ß-ß type dimer pinoresinol, ß-1 type dimer 1,2-bis(4-hydroxy-3-methoxyphehyl)-1,3-propanediol and 5-5 type dimer 5,5'-dehydrodivanillate were converted to cis, cis-muconate. Additionally, the developed coculture systems also showed potential in conversion of lignin-derived dimers to gallate. The application of alkali lignin for cis, cis-muconate production further demonstrated the effectiveness of the designed coculture systems. Overall, the developed coculture systems are beneficial to lignin biological valorization, and also provide references for the valorization of other bio-resources.


Assuntos
Lignina , Sphingomonadaceae , Álcalis , Técnicas de Cocultura , Éteres , Rhodococcus
4.
Appl Microbiol Biotechnol ; 105(4): 1745-1758, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33523248

RESUMO

Yarrowia lipolytica strain is a promising cell factory for the conversion of lignocellulose to biofuels and bioproducts. Despite the inherent robustness of this strain, further improvements to lignocellulose-derived inhibitors toxicity tolerance of Y. lipolytica are also required to achieve industrial application. Here, adaptive laboratory evolution was employed with increasing concentrations of ferulic acid. The adaptive laboratory evolution experiments led to evolve Y. lipolytica strain yl-XYL + *FA*4 with increased tolerance to ferulic acid as compared to the parental strain. Specifically, the evolved strain could tolerate 1.5 g/L ferulic acid, whereas 0.5 g/L ferulic acid could cause about 90% lethality of the parental strain. Transcriptome analysis of the evolved strain revealed several targets underlying toxicity tolerance enhancements. YALI0_E25201g, YALI0_F05984g, YALI0_B18854g, and YALI0_F16731g were among the highest upregulated genes, and the beneficial contributions of these genes were verified via reverse engineering. Recombinant strains with overexpressing each of these four genes obtained enhanced tolerance to ferulic acid as compared to the control strain. Fortunately, recombinant strains with overexpression of YALI0_E25201g, YALI0_B18854g, and YALI0_F16731g individually also obtained enhanced tolerance to vanillic acid. Overall, this work demonstrated a whole strain improvement cycle by "non-rational" metabolic engineering and presented new targets to modify Y. lipolytica for microbial lignocellulose valorization. KEY POINTS: • Adaptive evolution improved the ferulic acid tolerance of Yarrowia lipolytica • Transcriptome sequence was applied to analyze the ferulic acid tolerate strain • Three genes were demonstrated for both ferulic acid and vanillic acid tolerance.


Assuntos
Yarrowia , Ácidos Cumáricos/farmacologia , Laboratórios , Engenharia Metabólica , Yarrowia/genética
5.
J Biol Chem ; 294(47): 17962-17977, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31619521

RESUMO

Streptococcus suis is a globally distributed zoonotic pathogen associated with meningitis and septicemia in humans, posing a serious threat to public health. To successfully invade and disseminate within its host, this bacterium must overcome the innate immune system. The antimicrobial peptide LL-37 impedes invading pathogens by directly perforating bacterial membranes and stimulating the immune function of neutrophils, which are the major effector cells against S. suis However, little is known about the biological relationship between S. suis and LL-37 and how this bacterium adapts to and evades LL-37-mediated immune responses. In this study by using an array of approaches, including enzyme, chemotaxis, cytokine assays, quantitative RT-PCR, and CD spectroscopy, we found that the cysteine protease ApdS from S. suis cleaves LL-37 and thereby plays a key role in the interaction between S. suis and human neutrophils. S. suis infection stimulated LL-37 production in human neutrophils, and S. suis exposure to LL-37 up-regulated ApdS protease expression in the bacterium. We observed that ApdS targets and rapidly cleaves LL-37, impairing its bactericidal activity against S. suis We attributed this effect to the decreased helical content of the secondary structure in the truncated peptide. Moreover, ApdS rescued S. suis from killing by human neutrophils and neutrophil extracellular traps because LL-37 truncation attenuated neutrophil chemotaxis and inhibited the formation of extracellular traps and the production of reactive oxygen species. Altogether, our findings reveal an immunosuppressive strategy of S. suis whereby the bacterium blunts the innate host defenses via ApdS protease-mediated LL-37 cleavage.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Proteases/metabolismo , Evasão da Resposta Imune , Imunidade Inata , Streptococcus suis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Quimiotaxia , Cisteína Proteases/química , Cisteína Proteases/genética , Armadilhas Extracelulares/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Viabilidade Microbiana , Neutrófilos/imunologia , Neutrófilos/microbiologia , Estrutura Secundária de Proteína , Espécies Reativas de Oxigênio/metabolismo , Infecções Estreptocócicas/imunologia , Streptococcus suis/genética , Células THP-1 , Catelicidinas
6.
FEMS Yeast Res ; 20(5)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32614407

RESUMO

The red yeast Rhodosporidium toruloides naturally produces microbial lipids and carotenoids. In the past decade or so, many studies demonstrated R. toruloides as a promising platform for lipid production owing to its diverse substrate appetites, robust stress resistance and other favorable features. Also, significant progresses have been made in genome sequencing, multi-omic analysis and genome-scale modeling, thus illuminating the molecular basis behind its physiology, metabolism and response to environmental stresses. At the same time, genetic parts and tools are continuously being developed to manipulate this distinctive organism. Engineered R. toruloides strains are emerging for enhanced production of conventional lipids, functional lipids as well as other interesting metabolites. This review updates those progresses and highlights future directions for advanced biotechnological applications.


Assuntos
Microbiologia Industrial , Lipídeos/biossíntese , Engenharia Metabólica , Rhodotorula/metabolismo , Rhodotorula/genética
7.
Biotechnol Bioeng ; 117(7): 2008-2022, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32170874

RESUMO

Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single-specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars. In our previous studies, both organisms were cocultured to produce butanol by consolidated bioprocessing. However, such consolidated bioprocessing implementation strongly depends on pH regulation. Since low pH (pH 4.5-5.5) is required for butanol fermentation, C. cellulovorans cannot grow well and saccharify sufficient lignocellulose to feed both strains at a pH below 6.4. To overcome this bottleneck, this study engineered C. cellulovorans by adaptive laboratory evolution, inactivating cell wall lyases genes (Clocel_0798 and Clocel_2169), and overexpressing agmatine deiminase genes (augA, encoded by Cbei_1922) from C. beijerinckii NCIMB 8052. The generated strain WZQ36: 743B*6.0*3△lyt0798△lyt2169-(pXY1-Pthl -augA) can tolerate a pH of 5.5. Finally, the alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824 was introduced into the strain to enable butanol production at low pH, in coordination with solvent fermentation of C. beijerinckii in consortium. The engineered consortium produced 3.94 g/L butanol without pH control within 83 hr, which is more than 5-fold of the level achieved by wild consortia under the same conditions. This exploration represents a proof of concept on how to combine metabolic and evolutionary engineering to coordinate coculture of a synthetic microbial community.


Assuntos
Butanóis/metabolismo , Clostridium/genética , Engenharia Genética/métodos , Clostridium/metabolismo , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Clostridium beijerinckii/genética , Clostridium beijerinckii/metabolismo , Concentração de Íons de Hidrogênio , Engenharia Metabólica/métodos , Microbiota
8.
Appl Microbiol Biotechnol ; 104(19): 8171-8186, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32845366

RESUMO

Rhamnolipids have extensive potential applications and are the most promising biosurfactants for commercialization. The efficient and accurate identification and analysis of these are important to their production, application and commercialization. Accordingly, significant efforts have been made to identify and analyse rhamnolipids during screening of producing strains, fermentation and application processes. Cationic cetyltrimethylammonium bromide-methylene blue (CTAB-MB) test combines a series of indirect assays to efficiently assist in the primary screening of rhamnolipids-producing strains, while the secretion of rhamnolipids by these strains can be identified through TLC, FTIR, NMR, electrospray ionization mass spectrometry (ESI-MS) and HPLC-MS analysis. Rhamnolipids can be quantified by colorimetric methods requiring the use of concentrated acid, and this approach has the advantages of reliability, simplicity, low-cost and excellent reproducibility with very low technological requirements. HPLC-MS can also be employed as required as a more accurate quantification method. In addition, HPLC-ELSD has been established as the internationally acceptable measure of rhamnolipids for commercial purposes. The preparation of well-accepted rhamnolipids standards and modifications of analysis operations are essential to further enhance the accuracy and improve the simplicity of rhamnolipid analysis.Key points• Current status of R&D works on determination of rhamnolipids is listed• Advantages and disadvantages of various types analysis are summarized• Limitations of current rhamnolipid quantification are discussed Graphical abstract.


Assuntos
Glicolipídeos , Pseudomonas aeruginosa , Cromatografia Líquida de Alta Pressão , Reprodutibilidade dos Testes
9.
Int J Mol Sci ; 21(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182913

RESUMO

Mammalian cathelicidins act as the potent microbicidal molecules for controlling bacterial infection, and are considered promising alternatives to traditional antibiotics. Their ability to modulate host immune responses, as well as their bactericidal activities, is essential for therapeutic interventions. In this study, we compared the bactericidal activities, antibiofilm activities and immune-modulatory properties of cathelicidins BMAP-27, BMAP-34, mCRAMP, and LL-37, and evaluated the therapeutic efficacy of the combination of BMAP-27 and LL-37 using a mouse pulmonary infection model. Our results showed that all of the four cathelicidins effectively killed bacteria via rapid induction of membrane permeabilization, and BMAP-27 exhibited the most excellent bactericidal activity against diverse bacterial pathogens. BMAP-27, mCRAMP, and LL-37 effectively inhibited biofilm formation, while BMAP-34, mCRAMP and LL-37 exerted immunomodulatory functions with varying degrees of efficacy by stimulating the chemotaxis of neutrophils, inducing the production of reactive oxygen species, and facilitating the formation of neutrophil extracellular traps. Of note, the combination of BMAP-27 and LL-37 effectively enhanced the clearance of Pseudomonas aeruginosa and reduced the organ injury in vivo. Together, these findings highlight that identifying the appropriate synergistic combination of mammalian cathelicidins with different beneficial properties may be an effective strategy against bacterial infection.


Assuntos
Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Catelicidinas/farmacologia , Fatores Imunológicos/farmacologia , Mamíferos/metabolismo , Neutrófilos/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Feminino , Humanos , Pulmão/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos
10.
Biotechnol Bioeng ; 114(8): 1713-1720, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28369757

RESUMO

High enzyme loading and low productivity are two major issues impeding low cost ethanol production from lignocellulosic biomass. This work applied rapid bioconversion with integrated recycle technology (RaBIT) and extractive ammonia (EA) pretreatment for conversion of corn stover (CS) to ethanol at high solids loading. Enzymes were recycled via recycling unhydrolyzed solids. Enzymatic hydrolysis with recycled enzymes and fermentation with recycled yeast cells were studied. Both enzymatic hydrolysis time and fermentation time were shortened to 24 h. Ethanol productivity was enhanced by two times and enzyme loading was reduced by 30%. Glucan and xylan conversions reached as high as 98% with an enzyme loading of as low as 8.4 mg protein per g glucan. The overall ethanol yield was 227 g ethanol/kg EA-CS (191 g ethanol/kg untreated CS). Biotechnol. Bioeng. 2017;114: 1713-1720. © 2017 Wiley Periodicals, Inc.


Assuntos
Amônia/química , Celulase/química , Etanol/isolamento & purificação , Etanol/metabolismo , Componentes Aéreos da Planta/microbiologia , Saccharomyces cerevisiae/metabolismo , Zea mays/microbiologia , Reatores Biológicos/microbiologia , Hidrólise , Lignina/química , Lignina/metabolismo , Extração Líquido-Líquido/métodos , Componentes Aéreos da Planta/química , Reciclagem/métodos , Integração de Sistemas , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa