Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 135(2): 461-472, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34731273

RESUMO

KEY MESSAGE: Cytochimera potato plants, which mixed with diploid and tetraploid cells, could cause the highest and significantly increased biomass yield than the polyploid and diploid potato plants. Polyploidization is an important approach in crop breeding for agronomic trait improvement, especially for biomass production. Cytochimera contains two or more mixed cells with different levels of ploidy, which is considered a failure in whole genome duplication. Using colchicine treatment with diploid (Dip) potato (Solanum chacoense) plantlets, this study generated tetraploid (Tet) and cytochimera (Cyt) lines, which, respectively, contained complete and partial cells with genome duplication. Compared to the Dip potato, we observed remarkably enhanced plant growth and biomass yields in Tet and Cyt lines. Notably, the Cyt potato straw, which was generated from incomplete genome doubling, was of significantly higher biomass yield than that of the Tet with a distinctively altered cell wall composition. Meanwhile, we observed that one layer of the tetraploid cells (about 30%) in Cyt plants was sufficient to trigger a gene expression pattern similar to that of Tet, suggesting that the biomass dominance of Cyt may be related to the proportion of different ploidy cells. Further genome-wide analyses of co-expression networks indicated that down-regulation (against Dip) of spliceosomal-related transcripts might lead to differential alternative splicing for specifically improved agronomic traits such as plant growth, biomass yield, and lignocellulose composition in Tet and Cyt plants. In addition, this work examined that the genome of Cyt line was relatively stable after years of asexual reproduction. Hence, this study has demonstrated that incomplete genome doubling is a promising strategy to maximize biomass production in potatoes and beyond.


Assuntos
Solanum tuberosum , Biomassa , Genoma de Planta , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Solanum tuberosum/genética , Tetraploidia
2.
Carbohydr Polym ; 265: 118070, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33966834

RESUMO

Potato is a major food crop with enormous biomass straw, but lignocellulose recalcitrance causes a costly bioethanol conversion. Here, we selected the cytochimera (Cyt) potato samples showing significantly-modified lignocellulose and much increased soluble sugars and starch by 2-4 folds in mature straws. Under two pretreatments (8 min liquid hot water; 5% CaO) at minimized conditions, the potato Cyt straw showed complete enzymatic saccharification. Further performing yeast fermentation with all hexoses released from soluble sugars, starch and lignocellulose in the Cyt straw, this study achieved a maximum bioethanol yield of 24 % (% dry matter), being higher than those of other bioenergy crops as previously reported. Hence, this study has proposed a novel mechanism model on the reduction of major lignocellulose recalcitrance and regulation of carbon assimilation to achieve cost-effective bioethanol production under optimal pretreatments. This work also provides a sustainable strategy for utilization of potato straws with minimum waste release.


Assuntos
Biocombustíveis , Etanol/metabolismo , Lignina/química , Solanum tuberosum/química , Amido/química , Biomassa , Celulase/metabolismo , Celulose/química , Produtos Agrícolas/química , Etanol/química , Fermentação , Hidrólise , Lignina/metabolismo , Poliploidia , Saccharomyces cerevisiae/metabolismo , Solanum tuberosum/genética , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa