Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 704: 149661, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38417343

RESUMO

To date only four recombinant growth factors, including Filgrastim (rhG-CSF), have been approved by FDA as radiomitigators to ameliorate hematopoietic acute radiation syndrome (H-ARS). These approved agents are not stable under room-temperature, needing to be stored at 2-8 °C, and would not be feasible in a mass casualty scenario where rapid and cost-effective intervention is crucial. Delta-tocotrienol (δ-T3H), the most potent G-CSF-inducing agent among vitamin E isoforms, exhibited efficiency and selectivity on G-CSF production in comparison with TLR and STING agonists in mice. Five-dose δ-T3H was utilized as the optimal therapeutic regimen due to long-term G-CSF production and the best peripheral blood (PB) recovery of irradiated mice. Comparable with rhG-CSF, sequential administration of δ-T3H post-irradiation improved hematologic recovery and accelerated the regeneration of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) in the bone marrow (BM) and spleen of 6.5Gy irradiated mice; and consistently enhanced repopulation of BM-HSCs. In 4.0Gy irradiated nonhuman primates, δ-T3H exhibited comparable efficacy as rhG-CSF to promote PB recovery and colony-formation of BM-HPCs. Altogether, we demonstrated that sequential administration of delta-tocotrienol ameliorates radiation-induced myelosuppression in mice and non-human primates through inducing G-CSF production, indicated δ-T3H as a promising radiomitigator for the management of H-ARS, particularly in a mass casualty scenario.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Vitamina E , Animais , Camundongos , Medula Óssea/patologia , Medula Óssea/efeitos da radiação , Fator Estimulador de Colônias de Granulócitos/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/metabolismo , Primatas , Proteínas Recombinantes/farmacologia , Vitamina E/análogos & derivados , Vitamina E/uso terapêutico
2.
Pharm Dev Technol ; 29(5): 415-428, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626316

RESUMO

Sleep disorders are one of the most common acute reactions on the plateau, which can cause serious complications. However, there is no effective and safe treatment currently available. Nimodipine (NMD) is a dihydropyridine calcium channel blocker with neuroprotective and vasodilating activity, mainly used for the treatment of ischemic brain injury. Commercial oral or injectable NMD formulations are not a good option for central neuron diseases due to their poor brain delivery. In this study, nimodipine dissolving microneedles (NDMNs) were prepared for the prevention of sleep disorders caused by hypoxia. NDMNs were composed of NMD and polyvinyl pyrrolidone (PVP) K90 with a conical morphology and high rigidity. After administration of NDMNs on the back neck of mice, the concentration of NMD in the brain was significantly higher than that of oral medication as was confirmed by the fluorescent imaging on mouse models. NDMNs enhanced cognitive function, alleviated oxidative stress, and improved the sleep quality of mice with high-altitude sleep disorders. The blockage of calcium ion overloading may be an important modulation mechanism. NDMNs are a promising and user-friendly formulation for the prevention of high-altitude sleep disorders.


Assuntos
Bloqueadores dos Canais de Cálcio , Nimodipina , Transtornos do Sono-Vigília , Animais , Camundongos , Nimodipina/administração & dosagem , Transtornos do Sono-Vigília/tratamento farmacológico , Transtornos do Sono-Vigília/prevenção & controle , Masculino , Bloqueadores dos Canais de Cálcio/administração & dosagem , Altitude , Agulhas , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Estresse Oxidativo/efeitos dos fármacos , Povidona/química , Camundongos Endogâmicos C57BL
3.
Acta Pharm Sin B ; 14(1): 365-377, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38261850

RESUMO

Chemotherapy is one of the major approaches for the treatment of metastatic lung cancer, although it is limited by the low tumor delivery efficacy of anticancer drugs. Bacterial therapy is emerging for cancer treatment due to its high immune stimulation effect; however, excessively generated immunogenicity will cause serious inflammatory response syndrome. Here, we prepared cancer cell membrane-coated liposomal paclitaxel-loaded bacterial ghosts (LP@BG@CCM) by layer-by-layer encapsulation for the treatment of metastatic lung cancer. The preparation processes were simple, only involving film formation, electroporation, and pore extrusion. LP@BG@CCM owned much higher 4T1 cancer cell toxicity than LP@BG due to its faster fusion with cancer cells. In the 4T1 breast cancer metastatic lung cancer mouse models, the remarkably higher lung targeting of intravenously injected LP@BG@CCM was observed with the almost normalized lung appearance, the reduced lung weight, the clear lung tissue structure, and the enhanced cancer cell apoptosis compared to its precursors. Moreover, several major immune factors were improved after administration of LP@BG@CCM, including the CD4+/CD8a+ T cells in the spleen and the TNF-α, IFN-γ, and IL-4 in the lung. LP@BG@CCM exhibits the optimal synergistic chemo-immunotherapy, which is a promising medication for the treatment of metastatic lung cancer.

4.
Int J Pharm ; 658: 124204, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38710297

RESUMO

Pulsatile drug delivery is hardly achieved by conventional gastro-retentive dosage forms. Artesunate as a typical anti-malaria medicine needs oral pulsatile release. Here, artesunate-loaded pulsatile-release multi-unit gastro-retentive tablets (APGTs) were prepared with a semi-solid extrusion three-dimensional (3D) printing method. An APGT was composed of three units: artesunate-loaded immediate and delayed release units and a block unit. The matrix of the immediate/delayed release units consisted of polyvinylpyrrolidone (PVP) K30 and croscarmellose sodium, which improved the rapid release of artesunate when contacting water. The block unit consisted of octadecanol, hydroxypropyl methyl cellulose K15M, PVP K30, and poloxamer F68. APGTs showed multi-phase release in simulated gastric liquids (SGLs). The first immediate release phase continued for 1 h followed by a long block phase for 7 h. The second rapid release phase was initiated when the eroded holes in the block unit extended to the inner delayed release unit, and this phase continued for about 14 h. Low-density APGTs could ensure their long-term floating in the stomach. Oral APGTs remained in the rabbit stomach for about 20 h. 3D printing provides a new strategy for the preparation of oral pulsatile-release tablets.


Assuntos
Antimaláricos , Artesunato , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Povidona , Impressão Tridimensional , Comprimidos , Artesunato/administração & dosagem , Artesunato/química , Artesunato/farmacocinética , Animais , Coelhos , Antimaláricos/administração & dosagem , Antimaláricos/química , Antimaláricos/farmacocinética , Povidona/química , Derivados da Hipromelose/química , Excipientes/química , Sistemas de Liberação de Medicamentos , Administração Oral , Carboximetilcelulose Sódica/química , Poloxâmero/química , Mucosa Gástrica/metabolismo
5.
Int J Pharm ; 658: 124225, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38750982

RESUMO

High-altitude sleep disturbance is a common symptom of acute mountain sickness, which can be alleviated via modulation of the gut-brain axis. Quercetin (Que) is used to modulate gut microbiota and serves as a potential drug to regulate the gut-brain axis, but the poor solubility and bioavailability affect its biological functions. Here, Que nanoparticles (QNPs) were prepared with zein using an antisolvent method, and QNP-loaded calcium alginate hydrogel microspheres (QNP@HMs) were prepared using electrospinning technology to improve the gastrointestinal stability and intestinal adhesion of QNPs. In the mouse model of high-altitude sleep disturbance, oral administration of QNP@HMs before the mice entering high altitude prolonged sleep duration, improved blood cell recovery, spontaneous behavior and short-term memory, and reduced such inflammation factors as TNF-α and iNOS. Moreover, QNP@HMs enhanced the abundance of probiotics in the gut, including Lactobacillus and Lachnospira, and reduced intestinal inflammation. However, in the mice after gut sterilization by long-term oral antibiotics, QNP@HMs showed no therapeutic effect. QNP@HMs are a promising medication for the prevention of high-altitude sleep disturbance based on the gut-brain axis.


Assuntos
Encéfalo , Microbioma Gastrointestinal , Hidrogéis , Microesferas , Nanopartículas , Quercetina , Animais , Quercetina/administração & dosagem , Quercetina/farmacologia , Quercetina/química , Nanopartículas/administração & dosagem , Hidrogéis/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Administração Oral , Masculino , Camundongos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Alginatos/química , Alginatos/administração & dosagem , Probióticos/administração & dosagem
6.
Polymers (Basel) ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543468

RESUMO

A traumatic hemorrhage is fatal due to the great loss of blood in a short period of time; however, there are a few biomaterials that can stop the bleeding quickly due to the limited water absorption speed. Here, a highly absorbent polymer (HPA), polyacrylate, was prepared as it has the best structure-effectiveness relationship. Within a very short period of time (2 min), HPA continually absorbed water until it swelled up to its 600 times its weight; more importantly, the porous structure comprised the swollen dressing. This instantaneous swelling immediately led to rapid hemostasis in irregular wounds. We optimized the HPA preparation process to obtain a rapidly water-absorbent polymer (i.e., HPA-5). HPA-5 showed favorable adhesion and biocompatibility in vitro. A rat femoral arteriovenous complete shear model and a tail arteriovenous injury model were established. HPA exhibited excellent hemostatic capability with little blood loss and short hemostatic time compared with CeloxTM in both of the models. The hemostatic mechanisms of HPA consist of fast clotting by aggregating blood cells, activating platelets, and accelerating the coagulation pathway via water absorption and electrostatic interaction. HPA is a promising highly water-absorbent hemostatic dressing for rapid and extensive blood clotting after vessel injury.

7.
Antioxidants (Basel) ; 13(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38671865

RESUMO

Radiation-induced enteritis is an unavoidable complication associated with pelvic tumor radiotherapy, significantly influencing the prognosis of cancer patients. The limited availability of commercial gastrointestinal radioprotectors in clinical settings poses a substantial challenge in preventing radiation enteritis. Despite the inherent radioprotective characteristics of Cur in vitro, its poor solubility in water, instability, and low bioavailability lead to inferior therapeutic effects in vivo. Herein, we developed novel ROS-responsive micelles (CTI) from inulin and curcumin, aimed at mitigating radiation enteritis. CTI micelles had excellent solubility and stability. Importantly, CTI improved the cytotoxicity and bioavailability of curcumin, thereby showing enhanced effectiveness in neutralizing ROS induced by radiation, safeguarding against DNA damage, and reducing radiation-induced cellular mortality. Moreover, in a radiation enteritis mice model, CTI not only alleviated severe radiation-induced intestinal injury but also improved redox-related indicators and reduced inflammatory cytokine expression. Furthermore, CTI effectively increased gut microbiota abundance and maintained gut homeostasis. In conclusion, CTI could be a promising candidate for the clinical management of radiation enteritis. Our study provides a new perspective for radioprotection using natural antioxidants.

8.
Heliyon ; 10(10): e31143, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813237

RESUMO

In order to investigate the effects of different drying methods on the properties of porous starch. The present study used four drying methods, namely hot air drying (HD), spray drying (SPD), vacuum freeze drying (FD) and supercritical carbon dioxide drying (SCD) to prepare maize and kudzu porous starch. Findings indicated that the physicochemical properties (e.g., morphology, crystallinity, enthalpy value, porosity, surface area and water absorption capacity as well as dye absorption capacity, particle size) of porous starch were significantly affected by the drying method. Compared with other samples, SCD-treated porous starch exhibited the highest surface areas of the starch (2.943 and 3.139 m2/g corresponding to kudzu and maize, respectively), amylose content (22.02 % and 16.85 % corresponding to kudzu and maize, respectively), MB and NR absorption capacity (90.63 %, 100.26 % and 90.63 %, 100.26 %, corresponding to kudzu ad maize, respectively), and thermal stability, whereas HD-treated porous starch showed the highest water-absorption capacity (123.8 % and 131.31 % corresponding to kudzu and maize, respectively). The dye absorption of the maize and kudzu porous starch was positively correlated with surface area, according to Pearson's correlation analysis. Therefore, in this study, our aim was to explore the effects of different drying methods on the Structure and properties of porous starch, and provide reference for selecting the best drying method for its application in different fields.

9.
Adv Mater ; 36(15): e2310306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194699

RESUMO

The enzymatic activities of Furin, Transmembrane serine proteinase 2 (TMPRSS2), Cathepsin L (CTSL), and Angiotensin-converting enzyme 2 (ACE2) receptor binding are necessary for the entry of coronaviruses into host cells. Precise inhibition of these key proteases in ACE2+ lung cells during a viral infection cycle shall prevent viral Spike (S) protein activation and its fusion with a host cell membrane, consequently averting virus entry to the cells. In this study, dual-drug-combined (TMPRSS2 inhibitor Camostat and CTSL inhibitor E-64d) nanocarriers (NCs) are constructed conjugated with an anti-human ACE2 (hACE2) antibody and employ Red Blood Cell (RBC)-hitchhiking, termed "Nanoengineered RBCs," for targeting lung cells. The significant therapeutic efficacy of the dual-drug-loaded nanoengineered RBCs in pseudovirus-infected K18-hACE2 transgenic mice is reported. Notably, the modular nanoengineered RBCs (anti-receptor antibody+NCs+RBCs) precisely target key proteases of host cells in the lungs to block the entry of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), regardless of virus variations. These findings are anticipated to benefit the development of a series of novel and safe host-cell-protecting antiviral therapies.


Assuntos
COVID-19 , Catepsina L , SARS-CoV-2 , Inibidores de Serina Proteinase , Animais , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , COVID-19/prevenção & controle , COVID-19/virologia , Eritrócitos , Pulmão/metabolismo , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa