Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Langmuir ; 39(20): 7063-7078, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37159941

RESUMO

The adhesion between silica surfaces and epoxy resins was investigated via molecular dynamics (MD) simulations with stable atomic models of silica substrates prepared by density functional theory (DFT) calculations and reactive force field (ReaxFF) MD simulations. We aimed to develop reliable atomic models for evaluating the effect of nanoscale surface roughness on adhesion. Three consecutive simulations were performed: (i) stable atomic modeling of silica substrates; (ii) network modeling of epoxy resins by pseudo-reaction MD simulations; and (iii) virtual experiments via MD simulations with deformations. We prepared stable atomic models of OH- and H-terminated silica surfaces based on a dense surface model to consider the native thin oxidized layers on silicon substrates. Moreover, a stable silica surface grafted with epoxy molecules as well as nano-notched surface models were constructed. Cross-linked epoxy resin networks confined between frozen parallel graphite planes were prepared by pseudo-reaction MD simulations with three different conversion rates. Tensile tests using MD simulations indicated that the shape of the stress-strain curve was similar for all models up to near the yield point. This behavior indicated that the frictional force originated from chain-to-chain disentanglements when the adhesion between the epoxy network and silica surfaces was sufficiently strong. MD simulations for shear deformation indicated that the friction pressures in the steady state for the epoxy-grafted silica surface were higher than those for the OH- and H-terminated surfaces. The slope of the stress-displacement curve was steeper for surfaces with deeper notches (approximately 1 nm in depth), although the friction pressures for the examined notched surfaces were similar to those for the epoxy-grafted silica surface. Thus, nanometer-scale surface roughness is expected to have a large impact on the adhesion between polymeric materials and inorganic substrates.

2.
Langmuir ; 39(46): 16484-16493, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37947780

RESUMO

Block copolymers (PmMn; P20M101 and P100M98) comprising poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC, P) containing biocompatible phosphorylcholin pendants and cationic poly((3-acryloylaminopropyl) trimethylammonium chloride) (PMAPTAC, M) were synthesized via a controlled radical polymerization method. The degrees of polymerization of the PMPC and PMAPTAC segments are denoted by subscripts (PmMn). The mixture of cationic PmMn and anionic sodium chondroitin sulfate C (CS) with the pendant anionic carboxylate and sulfonate groups formed polyion complex (PIC) aggregates in phosphate-buffered saline. A charge-neutralized mixture of P20M101 with CS formed P20M101/CS PIC vesicles with a hydrodynamic radius (Rh) of 97.2 nm, zeta potential of ca. 0 mV, and aggregation number (Nagg) of 23,044. PMPC shells covered the surface of the PIC vesicles. The mixture of P100M98 and CS formed PIC spherical micelles with the PIC core and hydrophilic PMPC shells. The Rh, zeta potential, and Nagg of the PIC micelles were 26.4 nm, ca. 0 mV, and 404, respectively. At pH < 4, the carboxylate anions in CS were protonated. Thus, the charge balance in the PIC micelles shifted to decrease the core density owing to the electrostatic repulsions of the excess cations in the core. The PIC micelles dissociated at a NaCl concentration ≥0.6 M owing to the charge screening effect. The positively charged PIC micelles with excess P100M98 can encapsulate anionic dyes owing to electrostatic interaction.

3.
Angew Chem Int Ed Engl ; 62(35): e202304493, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37458573

RESUMO

Rotaxanes consisting of a high-molecular-weight axle and wheel components (macro-rotaxanes) have high structural freedom, and are attractive for soft-material applications. However, their synthesis remains underexplored. Here, we investigated macro-rotaxane formation by the topological trapping of multicyclic polydimethylsiloxanes (mc-PDMSs) in silicone networks. mc-PDMS with different numbers of cyclic units and ring sizes was synthesized by cyclopolymerization of a α,ω-norbornenyl-functionalized PDMS. Silicone networks were prepared in the presence of 10-60 wt % mc-PDMS, and the trapping efficiency of mc-PDMS was determined. In contrast to monocyclic PDMS, mc-PDMSs with more cyclic units and larger ring sizes can be quantitatively trapped in the network as macro-rotaxanes. The damping performance of a 60 wt % mc-PDMS-blended silicone network was evaluated, revealing a higher tan δ value than the bare PDMS network. Thus, macro-rotaxanes are promising as non-leaching additives for network polymers.

4.
Langmuir ; 38(2): 777-785, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34955029

RESUMO

In order to explain or predict the macroscopic mechanical properties of polymer composites with complex nanostructures, atomic force microscopy (AFM)-based nanomechanics is one of the most appropriate tools because the local mechanical properties can be obtained by it. However, automatic force curve analysis based on contact mechanics would mislead us to the wrong conclusion. The purpose of this study is to elucidate this point by applying AFM nanomechanics on a carbon black (CB)-reinforced isoprene rubber (IR). The CB aggregates underneath the rubber surface prevent us from quantitatively evaluating the ratio of CB and interfacial polymer region (IPR), which is an important parameter to determine the macroscopic mechanical properties. In order to overcome this problem, transmission electron microtomography was incorporated to investigate the 3D structure in the same field of view as AFM nanomechanics. As a result, it was found that there are buried structures that do not appear in the AFM topographic image. In addition, we were able to reveal the existence of a force curve with an inflection point, which is characteristic of such "false" IPRs. To put it another way, we evidenced the existence of true IPRs for the first time by combining these state-of-the-art techniques.

5.
Langmuir ; 36(13): 3590-3599, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32049537

RESUMO

The development of a strategy for the assembly of nanoscale building blocks, in particular, anisotropic nanoparticles, into desired structures is important for the construction of functional materials and devices. However, control over the orientation of rod-shaped nanoparticles on a substrate for integration into solid-state devices remains challenging. Here, we report a strategy for the fabrication of finely aligned gold nanorod (GNR) arrays using polymer (DNA) brushes as a nanoscale template. The gold nanorods modified with cationic surface ligands were electrostatically adsorbed onto the DNA brush substrates under various conditions. The orientational behavior of the GNRs was examined by spectral analyses and transmission electron microtomography (TEMT). As a result, we found several important factors, such as moderate interaction between GNRs and polymers and polymer densities on the substrate, related to the vertical alignment of GNRs on the substrates. We also developed a purification method to remove the undesired adsorption of GNRs onto the arrays. Finally, we have succeeded in the fabrication of extensive vertical GNR arrays of high quality via the easy bottom-up process.

6.
Langmuir ; 36(11): 2816-2822, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32108488

RESUMO

The degradation of a metal-polymer interface was studied in three dimensions using focused ion beam-scanning electron microscopy (FIB-SEM) with energy-dispersive X-ray spectroscopy. A brass-rubber interface, which is important for tires, was examined as an example of a metal-polymer interface. Brass-plated steel cords were embedded in rubber, which was then vulcanized. The brass-rubber interface was treated at 70 °C under 96% humidity for up to 14 days (a wet-heat aging treatment). FIB-SEM provided clear three-dimensional images of the adhesive layer consisting of brass (CuZn), CuxS, and ZnO/ZnS between the steel cords and rubber. During degradation, CuxS at the interfaces diffused into the rubber, resulting in the direct contact of bare steel with rubber. The lack of a substantial adhesive layer explained the degradation of mechanical properties after the wet-heat treatment. In addition, electron diffraction and electron energy loss spectroscopy revealed that the Cu2S crystals in the adhesive layer changed to crystal-like CuS during the degradation, which also caused a degradation of mechanical properties because a high Cu valence of x ≈ 2 in CuxS leads to stronger adhesion than a valence of x = 1.

7.
Soft Matter ; 15(5): 926-936, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30644499

RESUMO

To develop molecularly based interpretations of the two-dimensional scattering patterns (2DSPs) of phase-separated block copolymers (BCPs), we performed coarse-grained molecular dynamics simulations of ABA tri-BCPs under uniaxial stretching for block-fractions where the A-segment (glassy domain) is smaller than the B-segment (rubbery domain), and estimated the behaviour of their 2DSPs. In BCP stretching experiments, mechanical properties are generally evaluated using a stress-strain curve. We obtained 2DSPs with different contrasts for the A- and B-segments, which are indicative of the differences between X-ray and neutron scattering experiments. The small- and wide-angle behaviours of the 2DSPs originate from the morphologies of the phase-separated domains and local bond orientations, respectively. When the block-fractions are changed for a constant stress value on the stress-strain (SS) curve, the brightness of the spots in the wide-angle region of the A- and B-segment-dominant 2DSPs decreases and increases with increasing strain, respectively. We can regard the systematic changes in the small-angle 2DSPs of the glassy domain and the wide-angle 2DSPs of the rubbery domain with changes in the SS-curve as a structure-property relationship.

8.
Acc Chem Res ; 50(6): 1293-1302, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28525260

RESUMO

Self-assembling structures and their dynamical processes in polymeric systems have been investigated using three-dimensional transmission electron microscopy (3D-TEM). Block copolymers (BCPs) self-assemble into nanoscale periodic structures called microphase-separated structures, a deep understanding of which is important for creating nanomaterials with superior physical properties, such as high-performance membranes with well-defined pore size and high-density data storage media. Because microphase-separated structures have become increasingly complicated with advances in precision polymerization, characterizing these complex morphologies is becoming increasingly difficult. Thus, microscopes capable of obtaining 3D images are required. In this article, we demonstrate that 3D-TEM is an essential tool for studying BCP nanostructures, especially those self-assembled during dynamical processes and under confined conditions. The first example is a dynamical process called order-order transitions (OOTs). Upon changing temperature or pressure or applying an external field, such as a shear flow or electric field, BCP nanostructures transform from one type of structure to another. The OOTs are examined by freezing the specimens in the middle of the OOT and then observing the boundary structures between the preexisting and newly formed nanostructures in three-dimensions. In an OOT between the bicontinuous double gyroid and hexagonally packed cylindrical structures, two different types of epitaxial phase transition paths are found. Interestingly, the paths depend on the direction of the OOT. The second example is BCP self-assemblies under confinement that have been examined by 3D-TEM. A variety of intriguing and very complicated 3D morphologies can be formed even from the BCPs that self-assemble into simple nanostructures, such as lamellar and cylindrical structures in the bulk (in free space). Although 3D-TEM is becoming more frequently used for detailed morphological investigations, it is generally used to study static nanostructures. Although OOTs are dynamical processes, the actual experiment is done in the static state, through a detailed morphological study of a snapshot taken during the OOT. Developing time-dependent nanoscale 3D imaging has become a hot topic. Here, the two main problems preventing the development of in situ electron tomography for polymer materials are addressed. First, the staining protocol often used to enhance contrast for electrons is replaced by a new contrast enhancement based on chemical differences between polymers. In this case, no staining is necessary. Second, a new 3D reconstruction algorithm allows us to obtain a high-contrast, quantitative 3D image from fewer projections than is required for the conventional algorithm to achieve similar contrast, reducing the number of projections and thus the electron beam dose. Combining these two new developments is expected to open new doors to 3D in situ real-time structural observation of polymer materials.

9.
Soft Matter ; 14(18): 3612-3623, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29683466

RESUMO

Triply-periodic networks (TPNs), like the well-known gyroid and diamond network phases, abound in soft matter assemblies, from block copolymers (BCPs), lyotropic liquid crystals and surfactants to functional architectures in biology. While TPNs are, in reality, volume-filling patterns of spatially-varying molecular composition, physical and structural models most often reduce their structure to lower-dimensional geometric objects: the 2D interfaces between chemical domains; and the 1D skeletons that thread through inter-connected, tubular domains. These lower-dimensional structures provide a useful basis of comparison to idealized geometries based on triply-periodic minimal, or constant-mean curvature surfaces, and shed important light on the spatially heterogeneous packing of molecular constituents that form the networks. Here, we propose a simple, efficient and flexible method to extract a 1D skeleton from 3D volume composition data of self-assembled networks. We apply this method to both self-consistent field theory predictions as well as experimental electron microtomography reconstructions of the double-gyroid phase of an ABA triblock copolymer. We further demonstrate how the analysis of 1D skeleton, 2D inter-domain surfaces, and combinations therefore, provide physical and structural insight into TPNs, across multiple length scales. Specifically, we propose and compare simple measures of network chirality as well as domain thickness, and analyze their spatial and statistical distributions in both ideal (theoretical) and non-ideal (experimental) double gyroid assemblies.

10.
Soft Matter ; 13(32): 5428-5436, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28702567

RESUMO

Block copolymer micelles have been extensively discussed for many decades because of their applications, such as lithography and drug delivery. However, controlling the morphologies of nanostructure assembly using block copolymer micelles as building elements remains a great challenge. In this work, we developed a novel route to induce micelle assembly in confined geometries. Polystyrene-block-polydimethylsiloxane (PS-b-PDMS) micelle solutions were used to prepare micelle nanostructures, and the critical parameters affecting the morphologies were determined. Micelle nanorods, micelle nanospheres, and multi-component nanopeapods were prepared by wetting anodic aluminum oxide (AAO) templates with micelle solutions. Rayleigh-instability-driven transformation was discovered to play an important role in controlling the morphologies of the micelle nanostructures. This study not only proposes a versatile approach to preparing block copolymer micelle nanostructures, but it also provides deeper insight into the controlling factors of block copolymer micelle morphologies in cylindrical confinement.

11.
J Am Chem Soc ; 138(10): 3274-7, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26924649

RESUMO

We demonstrate that binary mixtures of small and large gold nanoparticles (GNPs) (5/15, 5/30, 10/30, and 15/30 nm in diameter) in the presence of a glucose-terminated fluorinated oligo(ethylene glycol) ligand can spontaneously form size-segregated assemblies. The outermost layer of the assembly is composed of a single layer of small-sized GNPs, while the larger-sized GNPs are located in the interior, forming what is referred to as a yolk/shell assembly. Time course study reveals that small and large GNPs aggregate together, and these kinetically trapped aggregations were transformed into a size-segregated structure by repeating fusions. A yolk/shell structure was directly visualized in solution by X-ray laser diffraction imaging, indicating that the structure was truly formed in solution, but not through a drying process.

12.
Macromol Rapid Commun ; 36(5): 432-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25537368

RESUMO

Recent developments regarding charged multiblock copolymers that can form physical networks and exhibit robust mechanical properties herald new and exciting opportunities for contemporary technologies requiring amphiphilic attributes. Due to the presence of strong interactions, however, control over the phase behavior of such materials remains challenging, especially since their morphologies can be solvent-templated. In this study, transmission electron microscopy and microtomography are employed to examine the morphological characteristics of midblock-sulfonated pentablock ionomers prepared from solvents differing in polarity. Resultant images confirm that discrete, spherical ion-rich microdomains form in films cast from a relatively nonpolar solvent, whereas an apparently mixed morphology with a continuous ion-rich pathway is generated when the casting solvent is more highly polar. Detailed 3D analysis of the morphological characteristics confirms the coexistence of hexagonally-packed nonpolar cylinders and lamellae, which facilitates the diffusion of ions and/or other polar species through the nanostructured medium.


Assuntos
Íons , Polímeros/química , Solventes/química , Sulfonas/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Propriedades de Superfície , Água/química
13.
Langmuir ; 30(8): 2061-7, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24494786

RESUMO

The wetting transition from the Cassie-Baxter state to the Wenzel state on textured surfaces was investigated. Nano- to microscale hexagonal pillared lattices were prepared by nanoimprint lithography on fluorinated cycloolefin polymer substrates. The transition was clearly observed for water and some ionic liquids through contact angle measurements and optical microscopy. A simple model clearly demonstrated that the energy barrier in the wetting transition from the Cassie-Baxter state to the Wenzel state was dominated by the competition between the energy barrier and external forces, particularly the Laplace pressure in the present case.

14.
Langmuir ; 30(30): 9071-5, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25020041

RESUMO

The preparation of model, well-controlled colloidal assemblies has been a central approach to understanding and optimizing the characteristics and functionality of complex colloidal dispersion systems. This approach, which has created a significant literature and rather deep understanding for emulsions and foams, has yet to be established for the liquid marble (water-in-air) motif. In this article we report the preparation of well-controlled liquid marbles using monodisperse micron-size particles of poly(methylsilsesquioxane) (PMSQ). The low cohesive nature of the stabilizing particles, their narrow size distribution, and their hydrophobicity permit the formation of liquid marbles containing a particulate monolayer with a hexagonally close-packed (HCP) structure. The "cleaning process" by rolling of liquid marbles under a flow of air on a hydrophobic substrate was useful to obtain the monolayer structure. Moreover, the monolayer structure was only obtained from liquids with high surface energy, whereas the others were not useful even though multilayered structure was formed from liquids that have intermediate surface energy.

15.
Soft Matter ; 10(17): 2919-31, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24695767

RESUMO

This paper reviews recent progress concerning polymeric self-assemblies in confined spaces, including phase-separated structures of polymer blends and block copolymers. Although a wide variety of polymer self-assemblies have been studied in terms of conventional parameters, such as blend ratio, interaction of constituent polymers, block ratio, and molecular weight, a series of unique structures appear when the systems are self-assembled under confined conditions. Due to the limited space for phase separation, the polymers in the confinement are frustrated, and the resulting morphologies are distinctly different from those formed in free space. We give an overview of experimental and theoretical studies of the frustrated morphologies. We begin by defining confinement with respect to dimensionality and surface properties, and then introduce methods for producing various shapes and sizes of three-dimensional confinement. Finally, we present morphological and application-oriented studies and discuss the prospects for this research area.


Assuntos
Polímeros/química , Modelos Moleculares , Propriedades de Superfície
16.
J Chem Phys ; 140(5): 054904, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24511976

RESUMO

Percolation phenomena of homopolymer brushes on a planar substrate are simulated using the molecular Monte Carlo method in 3 dimensions. The grafted polymers are isolated from each other at extremely low grafting density, whereas a continuous polymer layer covers the whole substrate when the density rises to extremely high values. This indicates that percolation clusters of the grafted polymers, bridging both the edges of the substrate, appear at an intermediate density. We construct phase diagrams of this percolation phenomenon. Critical phenomena at the transition are also studied.

17.
Microscopy (Oxf) ; 73(2): 208-214, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37702250

RESUMO

We developed an in-situ shear test system suitable for transmission electron microscopy (TEM) observations, which enabled us to examine the shear deformation behaviours inside soft materials at nanoscale resolutions. This study was conducted on a nanoparticle-filled rubber to investigate its nanoscale deformation behaviour under a large shear strain. First, the shear deformation process of a large area in the specimen was accurately examined and proven to exhibit an almost perfect simple shear. At the nanoscale, voids grew along the maximum principal strain during shear deformation. In addition, the nanoscale regions with rubber and silica aggregates exhibited deformation behaviours similar to the global shear deformation of the specimen. Although the silica aggregates exhibited displacement along the shearing directions, rotational motions were also observed owing to the torque generated by the local shear stress. This in-situ shear deformation system for TEM enabled us to understand the nanoscale origins of the mechanical properties of soft materials, particularly polymer composites. Graphical Abstract.

18.
Micron ; 180: 103623, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461563

RESUMO

The structural characterization of epoxy resins is essential to improve the understanding on their structure-property relationship for promising high-performance applications. Among all analytical techniques, scanning transmission electron microscopy-electron energy-loss spectroscopy (STEM-EELS) is a powerful tool for probing the chemical and structural information of various materials at a high spatial resolution. However, for sensitive materials, such as epoxy resins, the structural damage induced by electron-beam irradiation limits the spatial resolution in the STEM-EELS analysis. In this study, we demonstrated the extraction of the intrinsic features and structural characteristics of epoxy resins by STEM-EELS under electron doses below 1 e-/Å2 at room temperature. The reliability of the STEM-EELS analysis was confirmed by X-ray absorption spectroscopy and spectrum simulation as low- or non-damaged reference data. The investigation of the dependence of the epoxy resin on the electron dose and exposure time revealed the structural degradation associated with electron-beam irradiation, exploring the prospect of EELS for examining epoxy resin at low doses. Furthermore, the degradation mechanisms in the epoxy resin owing to electron-beam irradiation were revealed. These findings can promote the structural characterization of epoxy-resin-based composites and other soft materials.

19.
Nat Commun ; 15(1): 1898, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459006

RESUMO

The mechanisms underlying the influence of the surface chemistry of inorganic materials on polymer structures and fracture behaviours near adhesive interfaces are not fully understood. This study demonstrates the first clear and direct evidence that molecular surface segregation and cross-linking of epoxy resin are driven by intermolecular forces at the inorganic surfaces alone, which can be linked directly to adhesive failure mechanisms. We prepare adhesive interfaces between epoxy resin and silicon substrates with varying surface chemistries (OH and H terminations) with a smoothness below 1 nm, which have different adhesive strengths by ~13 %. The epoxy resins within sub-nanometre distance from the surfaces with different chemistries exhibit distinct amine-to-epoxy ratios, cross-linked network structures, and adhesion energies. The OH- and H-terminated interfaces exhibit cohesive failure and interfacial delamination, respectively. The substrate surface chemistry impacts the cross-linked structures of the epoxy resins within several nanometres of the interfaces and the adsorption structures of molecules at the interfaces, which result in different fracture behaviours and adhesive strengths.

20.
Langmuir ; 29(4): 1148-51, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23281847

RESUMO

The wetting behavior of superhydrophilic polyelectrolyte brushes was investigated. Reflection interference contrast microscopy demonstrated that the contact angles of water on the polyelectrolyte brushes were extremely low but remained finite in the range of <3°. The presence of water molecules was evident, even outside the macroscopic water droplet. These water molecules were confined to the thin brush layers and contained a highly ordered hydrogen bond network, which was identified as structural water. The presence of the thin film and the structural water changed the surface energies, which prevented the complete wetting of the surface.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa