Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 106(1): 92-98, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33392688

RESUMO

Cadmium (Cd) threatens rice quality and human health, yet this risk remains uncertain in paddy fields with high geological background of transportation and deposition. In this study, we collected 31 pairs of soil and rice grain samples in Doumen and Xinhui Districts in Guangdong province, China and investigated which factors controlled Cd bioavailability in soil and accumulation in rice. Soil samples were mostly acidic and contained a range of organic matter. Total Cd in soil varied from 0.10 to 1.03 mg kg- 1 and was positively correlated with those of calcium (Ca), manganese (Mn) and iron (Fe), suggesting that these elements shared same sources and Cd was most likely originated from parent material. The activity ratio (AR, CaCl2-extractable Cd/soil Cd) and bioconcentration factor (BCF, rice grain Cd/soil Cd) of Cd were negatively correlated with soil pH. The coupling relationship between soil and rice grain Cd could be described by a linear model, which was used to predict soil Cd threshold values to keep rice grain Cd concentration from exceeding the Chinese limit (0.2 mg kg- 1). In summary, Cd pollution was not very severe in the paddy soils of studied area but the risk could not be neglected when soil was acidified, which could increase Cd bioavailability and accumulation in rice grain.


Assuntos
Oryza , Poluentes do Solo , Disponibilidade Biológica , Cádmio/análise , Cálcio , China , Humanos , Concentração de Íons de Hidrogênio , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa