Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med Imaging ; 23(1): 121, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697262

RESUMO

OBJECTIVE: Few studies have explored the clinical feasibility of using deep-learning reconstruction to reduce the radiation dose of CT. We aimed to compare the image quality and lung nodule detectability between chest CT using a quarter of the low dose (QLD) reconstructed with vendor-agnostic deep-learning image reconstruction (DLIR) and conventional low-dose (LD) CT reconstructed with iterative reconstruction (IR). MATERIALS AND METHODS: We retrospectively collected 100 patients (median age, 61 years [IQR, 53-70 years]) who received LDCT using a dual-source scanner, where total radiation was split into a 1:3 ratio. QLD CT was generated using a quarter dose and reconstructed with DLIR (QLD-DLIR), while LDCT images were generated using a full dose and reconstructed with IR (LD-IR). Three thoracic radiologists reviewed subjective noise, spatial resolution, and overall image quality, and image noise was measured in five areas. The radiologists were also asked to detect all Lung-RADS category 3 or 4 nodules, and their performance was evaluated using area under the jackknife free-response receiver operating characteristic curve (AUFROC). RESULTS: The median effective dose was 0.16 (IQR, 0.14-0.18) mSv for QLD CT and 0.65 (IQR, 0.57-0.71) mSv for LDCT. The radiologists' evaluations showed no significant differences in subjective noise (QLD-DLIR vs. LD-IR, lung-window setting; 3.23 ± 0.19 vs. 3.27 ± 0.22; P = .11), spatial resolution (3.14 ± 0.28 vs. 3.16 ± 0.27; P = .12), and overall image quality (3.14 ± 0.21 vs. 3.17 ± 0.17; P = .15). QLD-DLIR demonstrated lower measured noise than LD-IR in most areas (P < .001 for all). No significant difference was found between QLD-DLIR and LD-IR for the sensitivity (76.4% vs. 72.2%; P = .35) or the AUFROCs (0.77 vs. 0.78; P = .68) in detecting Lung-RADS category 3 or 4 nodules. Under a noninferiority limit of -0.1, QLD-DLIR showed noninferior detection performance (95% CI for AUFROC difference, -0.04 to 0.06). CONCLUSION: QLD-DLIR images showed comparable image quality and noninferior nodule detectability relative to LD-IR images.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Pessoa de Meia-Idade , Redução da Medicação , Neoplasias Pulmonares/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
2.
Diagnostics (Basel) ; 13(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36980397

RESUMO

It is unclear whether the visualization methods for artificial-intelligence-based computer-aided detection (AI-CAD) of chest radiographs influence the accuracy of readers' interpretation. We aimed to evaluate the accuracy of radiologists' interpretations of chest radiographs using different visualization methods for the same AI-CAD. Initial chest radiographs of patients with acute respiratory symptoms were retrospectively collected. A commercialized AI-CAD using three different methods of visualizing was applied: (a) closed-line method, (b) heat map method, and (c) combined method. A reader test was conducted with five trainee radiologists over three interpretation sessions. In each session, the chest radiographs were interpreted using AI-CAD with one of the three visualization methods in random order. Examination-level sensitivity and accuracy, and lesion-level detection rates for clinically significant abnormalities were evaluated for the three visualization methods. The sensitivity (p = 0.007) and accuracy (p = 0.037) of the combined method are significantly higher than that of the closed-line method. Detection rates using the heat map method (p = 0.043) and the combined method (p = 0.004) are significantly higher than those using the closed-line method. The methods for visualizing AI-CAD results for chest radiographs influenced the performance of radiologists' interpretations. Combining the closed-line and heat map methods for visualizing AI-CAD results led to the highest sensitivity and accuracy of radiologists.

3.
World J Radiol ; 8(10): 846-850, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27843543

RESUMO

A 60-year-old man was admitted due to rectosigmoid colon cancer, and a hepatic mass was incidentally found during the staging work-up. The mass appeared cystic with a thick wall and contained multiple bizarre cord-like structures on ultrasound, computed tomography and magnetic resonance imaging. The differential diagnoses included organizing abscess/hematoma, foreign body granuloma and parasite infestation. Serologic study revealed anti-sparganum antibodies. Over 4-year follow-up, the patient did not complain of symptoms, and no changes in the characteristics of the liver mass were observed. Hepatic sparganosis is rare; only two cases have been clinically reported, and no detailed radiologic description was available until now. This case report presents a detailed radiologic description of a hepatic mass that could most likely represent hepatic sparganosis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa