Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cell ; 156(1-2): 146-57, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439374

RESUMO

Misfolded proteins are often cytotoxic, unless cellular systems prevent their accumulation. Data presented here uncover a mechanism by which defects in secretory proteins lead to a dramatic reduction in their mRNAs and protein expression. When mutant signal sequences fail to bind to the signal recognition particle (SRP) at the ribosome exit site, the nascent chain instead contacts Argonaute2 (Ago2), and the mutant mRNAs are specifically degraded. Severity of signal sequence mutations correlated with increased proximity of Ago2 to nascent chain and mRNA degradation. Ago2 knockdown inhibited degradation of the mutant mRNA, while overexpression of Ago2 or knockdown of SRP54 promoted degradation of secretory protein mRNA. The results reveal a previously unappreciated general mechanism of translational quality control, in which specific mRNA degradation preemptively regulates aberrant protein production (RAPP).


Assuntos
Biossíntese de Proteínas , Dobramento de Proteína , Estabilidade de RNA , Partícula de Reconhecimento de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Argonautas/metabolismo , Cães , Células HeLa , Humanos , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
2.
Cell ; 146(1): 134-47, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21729785

RESUMO

In eukaryotic cells, the ribosome-Sec61 translocon complex (RTC) establishes membrane protein topology by cotranslationally partitioning nascent polypeptides into the cytosol, ER lumen, and lipid bilayer. Using photocrosslinking, collisional quenching, cysteine accessibility, and protease protection, we show that a canonical type II signal anchor (SA) acquires its topology through four tightly coupled and mechanistically distinct steps: (1) head-first insertion into Sec61α, (2) nascent chain accumulation within the RTC, (3) inversion from type I to type II topology, and (4) stable translocation of C-terminal flanking residues. Progression through each stage is induced by incremental increases in chain length and involves abrupt changes in the molecular environment of the SA. Importantly, type II SA inversion deviates from a type I SA at an unstable intermediate whose topology is controlled by dynamic interactions between the ribosome and translocon. Thus, the RTC coordinates SA topogenesis within a protected environment via sequential energetic transitions of the TM segment.


Assuntos
Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Animais , Sistema Livre de Células , Cães , Retículo Endoplasmático/metabolismo , Microssomos/metabolismo , Sinais Direcionadores de Proteínas , Coelhos , Canais de Translocação SEC
3.
Cell ; 136(1): 97-109, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19135892

RESUMO

Receptor downregulation in the MVB pathway is mediated by the ESCRT complexes. ESCRT-III is composed of four protein subunits that are monomeric in the cytosol and oligomerize into a protein lattice only upon membrane binding. Recent studies have shown that the ESCRT-III protein Snf7 can form a filament by undergoing homo-oligomerization. To examine the role of membrane binding and of interactions with other ESCRT components in initiating Snf7 oligomerization, we used fluorescence spectroscopy to directly detect and characterize the assembly of the Snf7 oligomer on liposomes using purified ESCRT components. The observed fluorescence changes reveal an obligatory sequence of membrane-protein and protein-protein interactions that generate the active conformation of Snf7. Also, we demonstrate that ESCRT-III assembly drives membrane deformation. Furthermore, using an in vitro disassembly assay, we directly demonstrate that Vps24 and Vps2 function as adaptors in the ATP-dependent membrane disassembly of the ESCRT-III complex by recruiting the AAA ATPase Vps4.


Assuntos
Endossomos/química , Endossomos/metabolismo , Espectrometria de Fluorescência , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Humanos , Lipossomos/química , Lipossomos/metabolismo , Complexos Multiproteicos/metabolismo , Leveduras
4.
Cell ; 133(3): 440-51, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18455985

RESUMO

SRP is essential for targeting nascent chains to the endoplasmic reticulum, and it delays nascent chain elongation in cell-free translation systems. However, the significance of this function has remained unclear. We show that efficient protein translocation into the ER is incompatible with normal cellular translation rates due to rate-limiting concentrations of SRP receptor (SR). We complemented mammalian cells depleted of SRP14 by expressing mutant versions of the protein lacking the elongation arrest function. The absence of a delay caused inefficient targeting of preproteins leading to defects in secretion, depletion of proteins in the endogenous membranes, and reduced cell growth. The detrimental effects were reversed by either reducing the cellular protein synthesis rate or increasing SR expression. SRP therefore ensures that nascent chains remain translocation competent during the targeting time window dictated by SR. Since SRP-signal sequence affinities vary, the delay may also regulate which proteins are preferentially targeted.


Assuntos
Retículo Endoplasmático Rugoso/metabolismo , Elongação Traducional da Cadeia Peptídica , Partícula de Reconhecimento de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Ciclo Celular , Linhagem Celular , Sistema Livre de Células , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/genética
5.
Cell ; 134(3): 439-50, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18692467

RESUMO

Protein translocation across the mitochondrial inner membrane is mediated by the TIM23 complex. While its central component, Tim23, is believed to form a protein-conducting channel, the regions of this subunit that face the imported protein are unknown. To examine Tim23 structure and environment in intact membranes at high resolution, various derivatives, each with a single, environment-sensitive fluorescent probe positioned at a specific site, were assembled into functional TIM23 complexes in active mitochondria and analyzed by multiple spectral techniques. Probes placed sequentially throughout a transmembrane region that was identified by crosslinking as part of the protein-conducting channel revealed an alpha helix in an amphipathic environment. Probes on the aqueous-facing helical surface specifically underwent spectral changes during protein import, and their accessibility to hydrophilic quenching agents is considered in terms of channel gating. This approach has therefore provided an unprecedented view of a translocon channel structure in an intact, fully operational, membrane-embedded complex.


Assuntos
Proteínas de Membrana Transportadoras/química , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Espectrometria de Fluorescência/métodos , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/química , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/química , Estrutura Secundária de Proteína , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Mol Cell ; 48(3): 398-408, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23022384

RESUMO

Most membrane proteins are integrated cotranslationally into the ER membrane at the translocon, where nonpolar nascent protein transmembrane segments (TMSs) are widely believed to partition directly into the nonpolar membrane interior. However, a FRET approach that monitors the separation between a fluorescent-labeled TMS and fluorescent phospholipids diffusing in the bulk lipid reveals that TMSs do not immediately enter the lipid phase of the membrane. Instead, TMSs are retained at the translocon by protein-protein interactions until their release into bulk lipid is triggered by translation termination or, in some cases, by the arrival of another nascent chain TMS at a translocon. Nascent chain status and structural elements therefore dictate the timing of TMS release into the lipid phase by altering TMS and flanking sequence interactions with translocons, ribosomes, and associated proteins, thereby controlling when successive TMSs assemble in the bilayer and TMS-delineated loops fold.


Assuntos
Retículo Endoplasmático/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Membrana/metabolismo , Fosfolipídeos/metabolismo , Eletroforese em Gel de Poliacrilamida , Modelos Biológicos , Biossíntese de Proteínas , Transporte Proteico , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Temperatura , Fatores de Tempo
7.
Mol Cell ; 41(6): 682-92, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21419343

RESUMO

The mechanism by which protein folding is coupled to biosynthesis is a critical, but poorly understood, aspect of protein conformational diseases. Here we use fluorescence resonance energy transfer (FRET) to characterize tertiary structural transitions of nascent polypeptides and show that the first nucleotide-binding domain (NBD1) of human CFTR, whose folding is defective in cystic fibrosis, folds via a cotranslational multistep pathway as it is synthesized on the ribosome. Folding begins abruptly as NBD1 residues 389-500 emerge from the ribosome exit tunnel, initiating compaction of a small, N-terminal α/ß-subdomain. Real-time kinetics of synchronized nascent chains revealed that subdomain folding is rapid, occurs coincident with synthesis, and is facilitated by direct ATP binding to the nascent polypeptide. These findings localize the major CF defect late in the NBD1 folding pathway and establish a paradigm wherein a cellular ligand promotes vectorial domain folding by facilitating an energetically favored local peptide conformation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , Ribossomos/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
8.
Traffic ; 17(2): 117-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26572236

RESUMO

The long-standing paradigm that all peroxisomal proteins are imported post-translationally into pre-existing peroxisomes has been challenged by the detection of peroxisomal membrane proteins (PMPs) inside the endoplasmic reticulum (ER). In mammals, the mechanisms of ER entry and exit of PMPs are completely unknown. We show that the human PMP PEX3 inserts co-translationally into the mammalian ER via the Sec61 translocon. Photocrosslinking and fluorescence spectroscopy studies demonstrate that the N-terminal transmembrane segment (TMS) of ribosome-bound PEX3 is recognized by the signal recognition particle (SRP). Binding to SRP is a prerequisite for targeting of the PEX3-containing ribosome•nascent chain complex (RNC) to the translocon, where an ordered multistep pathway integrates the nascent chain into the membrane adjacent to translocon proteins Sec61α and TRAM. This insertion of PEX3 into the ER is physiologically relevant because PEX3 then exits the ER via budding vesicles in an ATP-dependent process. This study identifies early steps in human peroxisomal biogenesis by demonstrating sequential stages of PMP passage through the mammalian ER.


Assuntos
Retículo Endoplasmático/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Peroxinas , Peroxissomos/metabolismo , Transporte Proteico/fisiologia , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
9.
J Biol Chem ; 290(29): 17733-17744, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26032415

RESUMO

The majority of cholesterol-dependent cytolysins (CDCs) utilize cholesterol as a membrane receptor, whereas a small number are restricted to the GPI-anchored protein CD59 for initial membrane recognition. Two cholesterol-binding CDCs, perfringolysin O (PFO) and streptolysin O (SLO), were found to exhibit strikingly different binding properties to cholesterol-rich natural and synthetic membranes. The structural basis for this difference was mapped to one of the loops (L3) in the membrane binding interface that help anchor the toxin monomers to the membrane after receptor (cholesterol) binding by the membrane insertion of its amino acid side chains. A single point mutation in this loop conferred the binding properties of SLO to PFO and vice versa. Our studies strongly suggest that changing the side chain structure of this loop alters its equilibrium between membrane-inserted and uninserted states, thereby affecting the overall binding affinity and total bound toxin. Previous studies have shown that the lipid environment of cholesterol has a dramatic effect on binding and activity. Combining this data with the results of our current studies on L3 suggests that the structure of this loop has evolved in the different CDCs to preferentially direct binding to cholesterol in different lipid environments. Finally, the efficiency of ß-barrel pore formation was inversely correlated with the increased binding and affinity of the PFO L3 mutant, suggesting that selection of a compatible lipid environment impacts the efficiency of membrane insertion of the ß-barrel pore.


Assuntos
Fenômenos Fisiológicos Bacterianos , Toxinas Bacterianas/metabolismo , Membrana Celular/microbiologia , Colesterol/metabolismo , Citotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Estreptolisinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Linhagem Celular , Membrana Celular/metabolismo , Citotoxinas/química , Proteínas Hemolisinas/química , Lipossomos/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estreptolisinas/química
10.
Nat Chem Biol ; 9(6): 383-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23563525

RESUMO

Perfringolysin O (PFO), a bacterial cholesterol-dependent cytolysin, binds a mammalian cell membrane, oligomerizes into a circular prepore complex (PPC) and forms a 250-Å transmembrane ß-barrel pore in the cell membrane. Each PFO monomer has two sets of three short α-helices that unfold and ultimately refold into two transmembrane ß-hairpin (TMH) components of the membrane-embedded ß-barrel. Interstrand disulfide-bond scanning revealed that ß-strands in a fully assembled PFO ß-barrel were strictly aligned and tilted at 20° to the membrane perpendicular. In contrast, in a low temperature-trapped PPC intermediate, the TMHs were unfolded and had sufficient freedom of motion to interact transiently with each other, yet the TMHs were not aligned or stably hydrogen bonded. The PFO PPC-to-pore transition therefore converts TMHs in a dynamic folding intermediate far above the membrane into TMHs that are hydrogen bonded to those of adjacent subunits in the bilayer-embedded ß-barrel.


Assuntos
Toxinas Bacterianas/química , Dissulfetos , Proteínas Hemolisinas/química , Membrana Celular/metabolismo , Colesterol/química , Clostridium perfringens/metabolismo , Reagentes de Ligações Cruzadas/química , Dimerização , Escherichia coli/metabolismo , Lipossomos/química , Conformação Molecular , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Temperatura , Tripsina/química
11.
J Biol Chem ; 287(29): 24534-43, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22645132

RESUMO

The assembly of the cholesterol-dependent cytolysin (CDC) oligomeric pore complex requires a complex choreography of secondary and tertiary structural changes in domain 3 (D3) of the CDC monomer structure. A point mutation was identified in the archetype CDC, perfringolysin O, that blocks detectable D3 structural changes and traps the membrane-bound monomers in an early and reversible stage of oligomer assembly. Using this and other mutants we show that specific D3 structural changes are propagated from one membrane-bound monomer to another. Propagation of these structural changes results in the exposure of a ß-strand in D3 that allows it to pair and form edge-on interactions with a second ß-strand of a free membrane-bound monomer. Pairing of these strands establishes the final geometry of the pore complex and is necessary to drive the formation of the ß-barrel pore. These studies provide new insights into how structural information is propagated between membrane-bound monomers of a self-assembling system and the interactions that establish the geometry of the final pore complex.


Assuntos
Colesterol/metabolismo , Perforina/química , Perforina/metabolismo , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Transferência Ressonante de Energia de Fluorescência , Hemólise , Humanos , Microscopia Eletrônica , Perforina/genética , Mutação Puntual/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
Proc Natl Acad Sci U S A ; 107(9): 4341-6, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20145114

RESUMO

The recognition and binding of cholesterol is an important feature of many eukaryotic, viral, and prokaryotic proteins, but the molecular details of such interactions are understood only for a few proteins. The pore-forming cholesterol-dependent cytolysins (CDCs) contribute to the pathogenic mechanisms of a large number of Gram-positive bacteria. Cholesterol dependence of the CDC mechanism is a hallmark of these toxins, yet the identity of the CDC cholesterol recognition motif has remained elusive. A detailed analysis of membrane interactive structures at the tip of perfringolysin O (PFO) domain 4 reveals that a threonine-leucine pair mediates CDC recognition of and binding to membrane cholesterol. This motif is conserved in all known CDCs and conservative changes in its sequence or order are not well tolerated. Thus, the Thr-Leu pair constitutes a common structural basis for mediating CDC-cholesterol recognition and binding, and defines a unique paradigm for membrane cholesterol recognition by surface-binding proteins.


Assuntos
Toxinas Bacterianas/metabolismo , Colesterol/metabolismo , Proteínas Hemolisinas/metabolismo , Leucina/metabolismo , Lipídeos de Membrana/metabolismo , Treonina/metabolismo , Sítios de Ligação , Western Blotting , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Bactérias Gram-Positivas/patogenicidade , Hemólise , Humanos , Ressonância de Plasmônio de Superfície
13.
RNA ; 16(8): 1660-72, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20581130

RESUMO

Amber suppressor tRNAs are widely used to incorporate nonnatural amino acids into proteins to serve as probes of structure, environment, and function. The utility of this approach would be greatly enhanced if multiple probes could be simultaneously incorporated at different locations in the same protein without other modifications. Toward this end, we have developed amber, opal, and ochre suppressor tRNAs derived from Escherichia coli, and yeast tRNA(Cys) that incorporate a chemically modified cysteine residue with high selectivity at the cognate UAG, UGA, and UAA stop codons in an in vitro translation system. These synthetic tRNAs were aminoacylated in vitro, and the labile aminoacyl bond was stabilized by covalently attaching a fluorescent dye to the cysteine sulfhydryl group. Readthrough efficiency (amber > opal > ochre) was substantially improved by eRF1/eRF3 inhibition with an RNA aptamer, thus overcoming an intrinsic hierarchy in stop codon selection that limits UGA and UAA termination suppression in higher eukaryotic translation systems. This approach now allows concurrent incorporation of two different modified amino acids at amber and opal codons with a combined apparent readthrough efficiency of up to 25% when compared with the parent protein lacking a stop codon. As such, it significantly expands the possibilities for incorporating nonnative amino acids for protein structure/function studies.


Assuntos
Aminoácidos/genética , Aminoácidos/metabolismo , RNA de Transferência , Âmbar , Aminoacilação/genética , Protocolos de Quimioterapia Combinada Antineoplásica , Asparaginase , Pareamento de Bases , Códon de Terminação , Cisteína/genética , Cisteína/metabolismo , Doxorrubicina , Escherichia coli/genética , Escherichia coli/metabolismo , Eucariotos , Prednisona , Proteínas/genética , Proteínas/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Vincristina
14.
RNA ; 16(5): 969-79, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20348448

RESUMO

The signal recognition particle (SRP) is a ubiquitous cytoplasmic ribonucleoprotein complex required for the cotranslational targeting of proteins to the endoplasmic reticulum (ER). In eukaryotes, SRP has to arrest the elongation of the nascent chains during targeting to ensure efficient translocation of the preprotein, and this function of SRP is dependent on SRP9/14. Here we present the results of a mutational study on the human protein h9/14 that identified and characterized regions and single residues essential for elongation arrest activity. Effects of the mutations were assessed both in cell-free translation/translocation assays and in cultured mammalian cells. We identified two patches of basic amino acid residues that are essential for activity, whereas the internal loop of SRP14 was found to be dispensable. One patch of important basic residues comprises the previously identified basic pentapetide KRDKK, which can be substituted by four lysines without loss of function. The other patch includes three lysines in the solvent-accessible alpha2 of h9. All essential residues are located in proximity in SRP9/14 and their basic character suggests that they serve as a positively charged platform for interactions with ribosomal RNA. In addition, they can all be lysines consistent with the hypothesis that they recognize their target(s) via electrostatic contacts, most likely with the phosphate backbone, as opposed to contacts with specific bases.


Assuntos
Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Linhagem Celular , Sequência Conservada , Teste de Complementação Genética , Humanos , Técnicas In Vitro , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Elongação Traducional da Cadeia Peptídica , Multimerização Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Partícula de Reconhecimento de Sinal/genética , Eletricidade Estática
15.
Biochem J ; 437(1): 149-55, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21466505

RESUMO

A cpSRP [chloroplast SRP (signal recognition particle)] comprising cpSRP54 and cpSRP43 subunits mediates the insertion of light-harvesting proteins into the thylakoid membrane. We dissected its interaction with a full-length membrane protein substrate in aqueous solution by insertion of site-specific photo-activatable cross-linkers into in vitro-synthesized Lhcb1 (major light-harvesting chlorophyll-binding protein of photosystem II). We show that Lhcb1 residues 166-176 cross-link specifically to the cpSRP43 subunit. Some cross-link positions within Lhcb1 are in the 'L18' peptide required for targeting of cpSRP substrates, whereas other cross-linking positions define a new targeting signal in the third transmembrane span. Lhcb1 was not found to cross-link to cpSRP54 at any position, and cross-linking to cpSRP43 is unaffected by the absence of cpSRP54. cpSRP43 thus effectively binds substrates autonomously, and its ability to independently bind an extended 20+-residue substrate region highlights a major difference with other SRP types where the SRP54 subunit binds to hydrophobic target sequences. The results also show that cpSRP43 can bind to a hydrophobic, three-membrane span, substrate in aqueous solution, presumably reflecting a role for cpSRP in the chloroplast stroma. This mode of action, and the specificity of the cpSRP43-substrate interaction, may be associated with cpSRP's unique post-translational mode of action.


Assuntos
Cloroplastos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Membrana/química , Dados de Sequência Molecular , Proteínas de Plantas/química , Conformação Proteica , Estrutura Terciária de Proteína , Soluções/metabolismo
16.
Proc Natl Acad Sci U S A ; 106(5): 1398-403, 2009 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19164516

RESUMO

Sorting of eukaryotic membrane and secretory proteins depends on recognition of ribosome-bound nascent chain signal sequences by the signal recognition particle (SRP). The current model suggests that the SRP cycle is initiated when a signal sequence emerges from the ribosomal tunnel and binds to SRP. Then elongation is slowed until the SRP-bound ribosome-nascent chain complex (RNC) is targeted to the SRP receptor in the endoplasmic reticulum (ER) membrane. The RNC is then transferred to the translocon, SRP is released, and translation resumes. Because RNCs do not target to the translocon efficiently if nascent chains become too long, the window for SRP to identify its substrates is short. We now show that a transmembrane signal-anchor sequence (SA) significantly enhances binding of SRP to RNCs even before the SA emerges from the ribosomal tunnel. In this mode, SRP does not contact the SA directly but is in close proximity to the portion of the nascent polypeptide that has already left the ribosomal tunnel. Early recruitment of SRP provides a mechanism to expand the window for substrate identification. We suggest that the dynamics of the SRP-ribosome interaction is affected not only by the direct binding of SRP to an exposed signal sequence but also by properties of the translating ribosome that are triggered from within the tunnel.


Assuntos
Sinais Direcionadores de Proteínas , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Substituição de Aminoácidos , Retículo Endoplasmático/metabolismo , Chaperonas Moleculares/metabolismo , Ligação Proteica , Partícula de Reconhecimento de Sinal/química
17.
J Biol Chem ; 285(23): 17614-27, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20382739

RESUMO

Interactions of Bcl-2 family proteins regulate permeability of the mitochondrial outer membrane and apoptosis. In particular, Bax forms an oligomer that permeabilizes the membrane. To map the interface of the Bax oligomer we used Triton X-100 as a membrane surrogate and performed site-specific photocross-linking. Bax-specific adducts were formed through photo-reactive probes at multiple sites that can be grouped into two surfaces. The first surface overlaps with the BH1-3 groove formed by Bcl-2 Homology motif 1, 2, and 3; the second surface is a rear pocket located on the opposite side of the protein from the BH1-3 groove. Further cross-linking experiments using Bax BH3 peptides and mutants demonstrated that the two surfaces interact with their counterparts in neighboring proteins to form two separated interfaces and that interaction at the BH1-3 groove primes the rear pocket for further interaction. Therefore, Bax oligomerization proceeds through a series of interactions that occur at separate, yet allosterically, coupled interfaces.


Assuntos
Apoptose , Proteína X Associada a bcl-2/metabolismo , Sítio Alostérico , Motivos de Aminoácidos , Bioquímica/métodos , Reagentes de Ligações Cruzadas/química , Detergentes/farmacologia , Humanos , Mutação , Octoxinol/farmacologia , Peptídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/química
18.
J Virol ; 84(11): 5520-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20335263

RESUMO

Plant viral infection and spread depends on the successful introduction of a virus into a cell of a compatible host, followed by replication and cell-to-cell transport. The movement proteins (MPs) p8 and p9 of Turnip crinkle virus are required for cell-to-cell movement of the virus. We have examined the membrane association of p9 and found that it is an integral membrane protein with a defined topology in the endoplasmic reticulum (ER) membrane. Furthermore, we have used a site-specific photo-cross-linking strategy to study the membrane integration of the protein at the initial stages of its biosynthetic process. This process is cotranslational and proceeds through the signal recognition particle and the translocon complex.


Assuntos
Carmovirus/química , Proteínas de Membrana/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Retículo Endoplasmático/química , Partícula de Reconhecimento de Sinal
19.
Nat Struct Mol Biol ; 13(6): 500-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16715095

RESUMO

A viral inner nuclear membrane-sorting motif sequence (INM-SM) was used to identify proteins that recognize integral membrane proteins destined for the INM. Herein we describe importin-alpha-16, a membrane-associated isoform of Spodoptera frugiperda importin-alpha that contains the C-terminal amino acid residues comprising armadillo helical-repeat domains 7-10. In the endoplasmic reticulum (ER) membrane, importin-alpha-16 is adjacent to the translocon protein Sec61alpha. Importin-alpha-16 cross-links to the INM-SM sequence as it emerges from the ribosomal tunnel and remains adjacent to the INM-SM after INM-SM integration into the ER membrane and release from the translocon. Cross-linking results suggest that importin-alpha-16 discriminates between INM- and non-INM-directed proteins. Thus, it seems that during and after cotranslational membrane integration, importin-alpha-16 is involved in the trafficking of integral membrane proteins to the INM.


Assuntos
Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Transporte Proteico , alfa Carioferinas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Epitopos/metabolismo , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , alfa Carioferinas/química
20.
Nat Struct Mol Biol ; 13(3): 209-17, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16491093

RESUMO

Synaptotagmin acts as a Ca(2+) sensor in neurotransmitter release through its two C(2) domains. Ca(2+)-dependent phospholipid binding is key for synaptotagmin function, but it is unclear how this activity cooperates with the SNARE complex involved in release or why Ca(2+) binding to the C(2)B domain is more crucial for release than Ca(2+) binding to the C(2)A domain. Here we show that Ca(2+) induces high-affinity simultaneous binding of synaptotagmin to two membranes, bringing them into close proximity. The synaptotagmin C(2)B domain is sufficient for this ability, which arises from the abundance of basic residues around its surface. We propose a model wherein synaptotagmin cooperates with the SNAREs in bringing the synaptic vesicle and plasma membranes together and accelerates membrane fusion through the highly positive electrostatic potential of its C(2)B domain.


Assuntos
Cálcio/farmacologia , Fusão de Membrana/efeitos dos fármacos , Fosfolipídeos/metabolismo , Sinaptotagminas/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Modelos Biológicos , Modelos Moleculares , Maleabilidade , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Espectrometria de Fluorescência , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Sinaptotagminas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa