Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Nucleic Acids Res ; 49(D1): D809-D816, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33313778

RESUMO

VIrus Particle ExploreR data base (VIPERdb) (http://viperdb.scripps.edu) is a curated repository of virus capsid structures and a database of structure-derived data along with various virus specific information. VIPERdb has been continuously improved for over 20 years and contains a number of virus structure analysis tools. The release of VIPERdb v3.0 contains new structure-based data analytics tools like Multiple Structure-based and Sequence Alignment (MSSA) to identify hot-spot residues within a selected group of structures and an anomaly detection application to analyze and curate the structure-derived data within individual virus families. At the time of this writing, there are 931 virus structures from 62 different virus families in the database. Significantly, the new release also contains a standalone database called 'Virus World database' (VWdb) that comprises all the characterized viruses (∼181 000) known to date, gathered from ICTVdb and NCBI, and their capsid protein sequences, organized according to their virus taxonomy with links to known structures in VIPERdb and PDB. Moreover, the new release of VIPERdb includes a service-oriented data engine to handle all the data access requests and provides an interface for futuristic data analytics using machine leaning applications.


Assuntos
Capsídeo/química , Ciência de Dados , Bases de Dados como Assunto , Vírus/química , Curadoria de Dados , Alinhamento de Sequência
2.
J Biol Chem ; 296: 100554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33744290

RESUMO

The structural study of icosahedral viruses has a long and impactful history in both crystallographic methodology and molecular biology. The evolution of the Protein Data Bank has paralleled and supported these studies providing readily accessible formats dealing with novel features associated with viral particle symmetries and subunit interactions. This overview describes the growth in size and complexity of icosahedral viruses from the first early studies of small RNA plant viruses and human picornaviruses up to the larger and more complex bacterial phage, insect, and human disease viruses such as Zika, hepatitis B, Adeno and Polyoma virus. The analysis of icosahedral viral capsid protein domain folds has shown striking similarities, with the beta jelly roll motif observed across multiple evolutionarily divergent species. The icosahedral symmetry of viruses drove the development of noncrystallographic symmetry averaging as a powerful phasing method, and the constraints of maintaining this symmetry resulted in the concept of quasi-equivalence in viral structures. Symmetry also played an important early role in demonstrating the power of cryo-electron microscopy as an alternative to crystallography in generating atomic resolution structures of these viruses. The Protein Data Bank has been a critical resource for assembling and disseminating these structures to a wide community, and the virus particle explorer (VIPER) was developed to enable users to easily generate and view complete viral capsid structures from their asymmetric building blocks. Finally, we share a personal perspective on the early use of computer graphics to communicate the intricacies, interactions, and beauty of these virus structures.


Assuntos
Bases de Dados de Proteínas , Vírion/química , Vírus/química , Gráficos por Computador , Vírus/genética
3.
Arch Virol ; 166(6): 1547-1563, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33683475

RESUMO

Virus maturation is found in all animal viruses and dsDNA bacteriophages that have been studied. It is a programmed process, cued by cellular environmental factors, that transitions a noninfectious, initial assembly product (provirus) to an infectious particle (virion). Nudaurelia capensis omega virus (NωV) is an ssRNA insect virus with T=4 quasi-symmetry. Over the last 20 years, NωV virus-like particles (VLPs) have been an attractive model for the detailed study of maturation. The novel feature of the system is the progressive transition from procapsid to capsid controlled by pH. Homogeneous populations of maturation intermediates can be readily produced at arbitrary intervals by adjusting the pH between 7.6 and 5.0. These intermediates were investigated using biochemical and biophysical methods to create a stop-frame transition series of this complex process. The studies reviewed here characterized the large-scale subunit reorganization during maturation (the particle changes size from 48 nm to 41 nm) as well as the mechanism of a maturation cleavage, a time-resolved study of cleavage site formation, and specific roles of quasi-equivalent subunits in the release of membrane lytic peptides required for cellular entry.


Assuntos
Vírus de RNA/fisiologia , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia , Animais , Vírus de RNA/genética , Proteínas Virais/genética
4.
Biophys J ; 114(6): 1295-1301, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29590587

RESUMO

Genome ejection proteins are required to facilitate transport of bacteriophage P22 double-stranded DNA safely through membranes of Salmonella. The structures and locations of all proteins in the context of the mature virion are known, with the exception of three ejection proteins. Furthermore, the changes that occur to the proteins residing in the mature virion upon DNA release are not fully understood. We used cryogenic electron microscopy to obtain what is, to our knowledge, the first asymmetric reconstruction of mature bacteriophage P22 after double-stranded DNA has been extruded from the capsid-a state representative of one step during viral infection. Results of icosahedral and asymmetric reconstructions at estimated resolutions of 7.8 and 12.5 Å resolutions, respectively, are presented. The reconstruction shows tube-like protein density extending from the center of the tail assembly. The portal protein does not revert to the more contracted, procapsid state, but instead maintains an extended and splayed barrel structure. These structural details contribute to our understanding of the molecular mechanism of P22 phage infection and also set the foundation for future exploitation serving engineering purposes.


Assuntos
Bacteriófago P22/genética , Bacteriófago P22/ultraestrutura , Microscopia Crioeletrônica , Genoma Viral/genética , Vírion/genética , Vírion/ultraestrutura , DNA Viral/metabolismo
5.
J Struct Biol ; 202(2): 129-141, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29331608

RESUMO

The information content of cryo EM data sets exceeds that of the electron scattering potential (cryo EM) density initially derived for structure determination. Previously we demonstrated the power of data variance analysis for characterizing regions of cryo EM density that displayed functionally important variance anomalies associated with maturation cleavage events in Nudaurelia Omega Capensis Virus and the presence or absence of a maturation protease in bacteriophage HK97 procapsids. Here we extend the analysis in two ways. First, instead of imposing icosahedral symmetry on every particle in the data set during the variance analysis, we only assume that the data set as a whole has icosahedral symmetry. This change removes artifacts of high variance along icosahedral symmetry axes, but retains all of the features previously reported in the HK97 data set. Second we present a covariance analysis that reveals correlations in structural dynamics (variance) between the interior of the HK97 procapsid with the protease and regions of the exterior (not seen in the absence of the protease). The latter analysis corresponds well with hydrogen deuterium exchange studies previously published that reveal the same correlation.


Assuntos
Bacteriófagos/química , Proteínas do Capsídeo/química , Conformação Proteica , Vírus de RNA/química , Regulação Alostérica , Microscopia Crioeletrônica , Montagem de Vírus/genética
6.
J Virol ; 91(20)2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768871

RESUMO

Our understanding of archaeal virus diversity and structure is just beginning to emerge. Here we describe a new archaeal virus, tentatively named Metallosphaera turreted icosahedral virus (MTIV), that was isolated from an acidic hot spring in Yellowstone National Park, USA. Two strains of the virus were identified and were found to replicate in an archaeal host species closely related to Metallosphaera yellowstonensis Each strain encodes a 9.8- to 9.9-kb linear double-stranded DNA (dsDNA) genome with large inverted terminal repeats. Each genome encodes 21 open reading frames (ORFs). The ORFs display high homology between the strains, but they are quite distinct from other known viral genes. The 70-nm-diameter virion is built on a T=28 icosahedral lattice. Both single particle cryo-electron microscopy and cryotomography reconstructions reveal an unusual structure that has 42 turret-like projections: 12 pentameric turrets positioned on the icosahedral 5-fold axes and 30 turrets with apparent hexameric symmetry positioned on the icosahedral 2-fold axes. Both the virion structural properties and the genome content support MTIV as the founding member of a new family of archaeal viruses.IMPORTANCE Many archaeal viruses are quite different from viruses infecting bacteria and eukaryotes. Initial characterization of MTIV reveals a virus distinct from other known bacterial, eukaryotic, and archaeal viruses; this finding suggests that viruses infecting Archaea are still an understudied group. As the first known virus infecting a Metallosphaera sp., MTIV provides a new system for exploring archaeal virology by examining host-virus interactions and the unique features of MTIV structure-function relationships. These studies will likely expand our understanding of virus ecology and evolution.

7.
Bioconjug Chem ; 28(1): 64-74, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28001371

RESUMO

We describe a new quantum dot (QD)-conjugate prepared with a lytic peptide, derived from a nonenveloped virus capsid protein, capable of bypassing the endocytotic pathways and delivering large amounts of QDs to living cells. The polypeptide, derived from the Nudaurelia capensis Omega virus, was fused onto the C-terminus of maltose binding protein that contained a hexa-HIS tag at its N-terminus, allowing spontaneous self-assembly of controlled numbers of the fusion protein per QD via metal-HIS interactions. We found that the efficacy of uptake by several mammalian cell lines was substantial even for small concentrations (10-100 nM). Upon internalization the QDs were primarily distributed outside the endosomes/lysosomes. Moreover, when cells were incubated with the conjugates at 4 °C, or in the presence of chemical endocytic inhibitors, significant intracellular uptake continued to occur. These findings indicate an entry mechanism that does not involve endocytosis, but rather the perforation of the cell membrane by the lytic peptide on the QD surfaces.


Assuntos
Peptídeos/administração & dosagem , Pontos Quânticos/administração & dosagem , Proteínas Virais/química , Animais , Linhagem Celular , Endossomos/metabolismo , Citometria de Fluxo , Humanos , Luminescência , Lisossomos/metabolismo , Peptídeos/química , Pontos Quânticos/metabolismo
8.
Nature ; 472(7341): 64-8, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21475196

RESUMO

M1 protein, a major virulence factor of the leading invasive strain of group A Streptococcus, is sufficient to induce toxic-shock-like vascular leakage and tissue injury. These events are triggered by the formation of a complex between M1 and fibrinogen that, unlike M1 or fibrinogen alone, leads to neutrophil activation. Here we provide a structural explanation for the pathological properties of the complex formed between streptococcal M1 and human fibrinogen. A conformationally dynamic coiled-coil dimer of M1 was found to organize four fibrinogen molecules into a specific cross-like pattern. This pattern supported the construction of a supramolecular network that was required for neutrophil activation but was distinct from a fibrin clot. Disruption of this network into other supramolecular assemblies was not tolerated. These results have bearing on the pathophysiology of streptococcal toxic shock.


Assuntos
Proteínas de Bactérias/metabolismo , Fibrinogênio/química , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Cristalografia por Raios X , Fibrinogênio/metabolismo , Fibrinogênio/ultraestrutura , Humanos , Modelos Moleculares , Ativação de Neutrófilo , Ligação Proteica , Conformação Proteica , Choque Séptico/microbiologia , Choque Séptico/fisiopatologia , Streptococcus pyogenes/química , Virulência , Fatores de Virulência/química
9.
Proc Natl Acad Sci U S A ; 111(24): 8815-9, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24889614

RESUMO

Human adenoviruses are double-stranded DNA viruses responsible for numerous infections, some of which can be fatal. Furthermore, adenoviruses are currently used in clinical trials as vectors for gene therapy applications. Although initial binding of adenoviruses to host attachment receptors has been extensively characterized, the interactions with the entry receptor (integrins) remain poorly understood at the structural level. We characterized the interactions between the adenovirus 9 penton base subunit and αVß3 integrin using fluorescence correlation spectroscopy and single-particle electron microscopy to understand the mechanisms underlying virus internalization and infection. Our results indicate that the penton base subunit can bind integrins with high affinity and in several different orientations. These outcomes correlate with the requirement of the pentameric penton base to simultaneously bind several integrins to enable their clustering and promote virus entry into the host cell.


Assuntos
Adenovírus Humanos , Proteínas do Capsídeo/química , Integrina alfaVbeta3/química , Capsídeo/química , Análise por Conglomerados , Vetores Genéticos , Humanos , Ligantes , Microscopia Eletrônica , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência , Internalização do Vírus
10.
J Struct Biol ; 193(3): 188-195, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26724602

RESUMO

Cryo EM structures of maturation-intermediate Prohead I of bacteriophage HK97 with (PhI(Pro+)) and without (PhI(Pro-)) the viral protease packaged have been reported (Veesler et al., 2014). In spite of PhI(Pro+) containing an additional ∼ 100 × 24 kD of protein, the two structures appeared identical although the two particles have substantially different biochemical properties, e.g., PhI(Pro-) is less stable to disassembly conditions such as urea. Here the same cryo EM images are used to characterize the spatial heterogeneity of the particles at 17Å resolution by variance analysis and show that PhI(Pro-) has roughly twice the standard deviation of PhI(Pro+). Furthermore, the greatest differences in standard deviation are present in the region where the δ-domain, not seen in X-ray crystallographic structures or fully seen in cryo EM, is expected to be located. Thus presence of the protease appears to stabilize the δ-domain which the protease will eventually digest.


Assuntos
Bacteriófagos/ultraestrutura , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Peptídeo Hidrolases/química , Bacteriófagos/química , Capsídeo/química , Cristalografia por Raios X , Modelos Teóricos , Peptídeo Hidrolases/ultraestrutura , Montagem de Vírus/genética
11.
Methods ; 91: 40-47, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26408523

RESUMO

Next-Generation Sequencing (NGS) has transformed our understanding of the dynamics and diversity of virus populations for human pathogens and model systems alike. Due to the sensitivity and depth of coverage in NGS, it is possible to measure the frequency of mutations that may be present even at vanishingly low frequencies within the viral population. Here, we describe a simple bioinformatic pipeline called CoVaMa (Co-Variation Mapper) scripted in Python that detects correlated patterns of mutations in a viral sample. Our algorithm takes NGS alignment data and populates large matrices of contingency tables that correspond to every possible pairwise interaction of nucleotides in the viral genome or amino acids in the chosen open reading frame. These tables are then analysed using classical linkage disequilibrium to detect and report evidence of epistasis. We test our analysis with simulated data and then apply the approach to find epistatically linked loci in Flock House Virus genomic RNA grown under controlled cell culture conditions. We also reanalyze NGS data from a large cohort of HIV infected patients and find correlated amino acid substitution events in the protease gene that have arisen in response to anti-viral therapy. This both confirms previous findings and suggests new pairs of interactions within HIV protease. The script is publically available at http://sourceforge.net/projects/covama.


Assuntos
Genoma Viral , HIV/genética , Sequenciamento de Nucleotídeos em Larga Escala , Desequilíbrio de Ligação , Mutação , Análise de Sequência de RNA/métodos , Algoritmos , Epistasia Genética , Infecções por HIV/virologia , Humanos , RNA Viral
12.
Nucleic Acids Res ; 42(2): e11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24137010

RESUMO

We developed an algorithm named ViReMa (Viral-Recombination-Mapper) to provide a versatile platform for rapid, sensitive and nucleotide-resolution detection of recombination junctions in viral genomes using next-generation sequencing data. Rather than mapping read segments of pre-defined lengths and positions, ViReMa dynamically generates moving read segments. ViReMa initially attempts to align the 5' end of a read to the reference genome(s) with the Bowtie seed-based alignment. A new read segment is then made by either extracting any unaligned nucleotides at the 3' end of the read or by trimming the first nucleotide from the read. This continues iteratively until all portions of the read are either mapped or trimmed. With multiple reference genomes, it is possible to detect virus-to-host or inter-virus recombination. ViReMa is also capable of detecting insertion and substitution events and multiple recombination junctions within a single read. By mapping the distribution of recombination events in the genome of flock house virus, we demonstrate that this information can be used to discover de novo functional motifs located in conserved regions of the viral genome.


Assuntos
Algoritmos , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Recombinação Genética , Genômica/métodos , Nodaviridae/genética , Motivos de Nucleotídeos , Alinhamento de Sequência
13.
Proc Natl Acad Sci U S A ; 110(14): 5504-9, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23520050

RESUMO

Sulfolobus turreted icosahedral virus (STIV) was isolated in acidic hot springs where it infects the archeon Sulfolobus solfataricus. We determined the STIV structure using near-atomic resolution electron microscopy and X-ray crystallography allowing tracing of structural polypeptide chains and visualization of transmembrane proteins embedded in the viral membrane. We propose that the vertex complexes orchestrate virion assembly by coordinating interactions of the membrane and various protein components involved. STIV shares the same coat subunit and penton base protein folds as some eukaryotic and bacterial viruses, suggesting that they derive from a common ancestor predating the divergence of the three kingdoms of life. One architectural motif (ß-jelly roll fold) forms virtually the entire capsid (distributed in three different gene products), indicating that a single ancestral protein module may have been at the origin of its evolution.


Assuntos
Proteínas de Membrana/química , Modelos Moleculares , Rudiviridae/química , Sulfolobus/virologia , Microscopia Crioeletrônica , Cristalografia por Raios X
14.
Nature ; 458(7238): 646-50, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19204733

RESUMO

Lambda-like double-stranded (ds) DNA bacteriophage undergo massive conformational changes in their capsid shell during the packaging of their viral genomes. Capsid shells are complex organizations of hundreds of protein subunits that assemble into intricate quaternary complexes that ultimately are able to withstand over 50 atm of pressure during genome packaging. The extensive integration between subunits in capsids requires the formation of an intermediate complex, termed a procapsid, from which individual subunits can undergo the necessary refolding and structural rearrangements needed to transition to the more stable capsid. Although various mature capsids have been characterized at atomic resolution, no such procapsid structure is available for a dsDNA virus or bacteriophage. Here we present a procapsid X-ray structure at 3.65 A resolution, termed prohead II, of the lambda-like bacteriophage HK97, the mature capsid structure of which was previously solved to 3.44 A (ref. 2). A comparison of the two largely different capsid forms has unveiled an unprecedented expansion mechanism that describes the transition. Crystallographic and hydrogen/deuterium exchange data presented here demonstrate that the subunit tertiary structures are significantly different between the two states, with twisting and bending motions occurring in both helical and beta-sheet regions. We also identified subunit interactions at each three-fold axis of the capsid that are maintained throughout maturation. The interactions sustain capsid integrity during subunit refolding and provide a fixed hinge from which subunits undergo rotational and translational motions during maturation. Previously published calorimetric data of a closely related bacteriophage, P22, showed that capsid maturation was an exothermic process that resulted in a release of 90 kJ mol(-1) of energy. We propose that the major tertiary changes presented in this study reveal a structural basis for an exothermic maturation process probably present in many dsDNA bacteriophage and possibly viruses such as herpesvirus, which share the HK97 subunit fold.


Assuntos
Capsídeo/química , Capsídeo/metabolismo , Siphoviridae/química , Siphoviridae/crescimento & desenvolvimento , Montagem de Vírus , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Cristalografia por Raios X , Medição da Troca de Deutério , Modelos Moleculares , Movimento , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Siphoviridae/genética , Termodinâmica
15.
Nucleic Acids Res ; 41(8): 4518-24, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23449219

RESUMO

The DNA structure in phage capsids is determined by DNA-DNA interactions and bending energy. The effects of repulsive interactions on DNA interaxial distance were previously investigated, but not the effect of DNA bending on its structure in viral capsids. By varying packaged DNA length and through addition of spermine ions, we transform the interaction energy from net repulsive to net attractive. This allowed us to isolate the effect of bending on the resulting DNA structure. We used single particle cryo-electron microscopy reconstruction analysis to determine the interstrand spacing of double-stranded DNA encapsidated in phage λ capsids. The data reveal that stress and packing defects, both resulting from DNA bending in the capsid, are able to induce a long-range phase transition in the encapsidated DNA genome from a hexagonal to a cholesteric packing structure. This structural observation suggests significant changes in genome fluidity as a result of a phase transition affecting the rates of viral DNA ejection and packaging.


Assuntos
Bacteriófago lambda/genética , Bacteriófago lambda/ultraestrutura , Capsídeo/ultraestrutura , DNA Viral/ultraestrutura , Microscopia Crioeletrônica , Empacotamento do DNA , DNA Viral/química , Genoma Viral , Conformação de Ácido Nucleico , Montagem de Vírus
16.
Proc Natl Acad Sci U S A ; 109(6): 1907-12, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22308402

RESUMO

Next-generation sequencing is a valuable tool in our growing understanding of the genetic diversity of viral populations. Using this technology, we have investigated the RNA content of a purified nonenveloped single-stranded RNA virus, flock house virus (FHV). We have also investigated the RNA content of virus-like particles (VLPs) of FHV and the related Nudaurelia capensis omega virus. VLPs predominantly package ribosomal RNA and transcripts of their baculoviral expression vectors. In addition, we find that 5.3% of the packaged RNAs are transposable elements derived from the Sf21 genome. This observation may be important when considering the therapeutic use of VLPs. We find that authentic FHV virions also package a variety of host RNAs, accounting for 1% of the packaged nucleic acid. Significant quantities of host messenger RNAs, ribosomal RNA, noncoding RNAs, and transposable elements are readily detected. The packaging of these host RNAs elicits the possibility of horizontal gene transfer between eukaryotic hosts that share a viral pathogen. We conclude that the genetic content of nonenveloped RNA viruses is variable, not just by genome mutation, but also in the diversity of RNA transcripts that are packaged.


Assuntos
Capsídeo/metabolismo , Elementos de DNA Transponíveis/genética , Eucariotos/genética , Interações Hospedeiro-Patógeno/genética , Vírus de RNA/genética , RNA Viral/genética , Animais , Capsídeo/ultraestrutura , Linhagem Celular , Regulação Viral da Expressão Gênica , Genoma Viral/genética , Taxa de Mutação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de RNA , Vírion/ultraestrutura , Montagem de Vírus/genética
17.
Proc Natl Acad Sci U S A ; 109(7): 2342-7, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308333

RESUMO

Capsid maturation with large-scale subunit reorganization occurs in virtually all viruses that use a motor to package nucleic acid into preformed particles. A variety of ensemble studies indicate that the particles gain greater stability during this process, however, it is unknown which material properties of the fragile procapsids change. Using Atomic Force Microscopy-based nano-indentation, we study the development of the mechanical properties during maturation of bacteriophage HK97, a λ-like phage of which the maturation-induced morphological changes are well described. We show that mechanical stabilization and strengthening occurs in three independent ways: (i) an increase of the Young's modulus, (ii) a strong rise of the capsid's ultimate strength, and (iii) a growth of the resistance against material fatigue. The Young's modulus of immature and mature capsids, as determined from thin shell theory, fit with the values calculated using a new multiscale simulation approach. This multiscale calculation shows that the increase in Young's modulus isn't dependent on the crosslinking between capsomers. In contrast, the ultimate strength of the capsids does increase even when a limited number of cross-links are formed while full crosslinking appears to protect the shell against material fatigue. Compared to phage λ, the covalent crosslinking at the icosahedral and quasi threefold axes of HK97 yields a mechanically more robust particle than the addition of the gpD protein during maturation of phage λ. These results corroborate the expected increase in capsid stability and strength during maturation, however in an unexpected intricate way, underlining the complex structure of these self-assembling nanocontainers.


Assuntos
Bacteriófagos/fisiologia , Eletroforese em Gel de Poliacrilamida , Microscopia de Força Atômica
18.
J Struct Biol ; 188(2): 183-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25278130

RESUMO

A new era has begun for single particle cryo-electron microscopy (cryoEM) which can now compete with X-ray crystallography for determination of protein structures. The development of direct detectors constitutes a revolution that has led to a wave of near-atomic resolution cryoEM reconstructions. However, regardless of the sample studied, virtually all high-resolution reconstructions reported to date have been achieved using high-end microscopes. We demonstrate that the new generation of direct detectors coupled to a widely used mid-range electron microscope also enables obtaining cryoEM maps of sufficient quality for de novo modeling of protein structures of different sizes and symmetries. We provide an outline of the strategy used to achieve a 3.7 Å resolution reconstruction of Nudaurelia capensis ω virus and a 4.2 Å resolution reconstruction of the Thermoplasma acidophilum T20S proteasome.


Assuntos
Microscopia Crioeletrônica/métodos , Proteínas/química , Cristalografia por Raios X/métodos , Thermoplasma/química , Vírus/química
19.
Small ; 10(15): 3058-63, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24733721

RESUMO

The assembly of plasmonic nanoparticles with precise spatial and orientational order may lead to structures with new electromagnetic properties at optical frequencies. The directed self-assembly method presented controls the interparticle-spacing and symmetry of the resulting nanometer-sized elements in solution. The self-assembly of three-dimensional (3D), icosahedral plasmonic nanosclusters (NCs) with resonances at visible wavelengths is demonstrated experimentally. The ideal NCs consist of twelve gold (Au) nanospheres (NSs) attached to thiol groups at predefined locations on the surface of a genetically engineered cowpea mosaic virus with icosahedral symmetry. In situ dynamic light scattering (DLS) measurements confirm the NSs assembly on the virus. Transmission electron micrographs (TEM) demonstrate the ability of the self-assembly method to control the nanoscopic symmetry of the bound NSs, which reflects the icosahedral symmetry of the virus. Both, TEM and DLS show that the NCs comprise of a distribution of capsids mostly covered (i.e., 6-12 NS/capsid) with NSs. 3D finite-element simulations of aqueous suspensions of NCs reproduce the experimental bulk absorbance measurements and major features of the spectra. Simulations results show that the fully assembled NCs give rise to a 10-fold surface-averaged enhancement of the local electromagnetic field.


Assuntos
Ouro/química , Nanopartículas Metálicas/ultraestrutura , Impressão Molecular/métodos , Nanocompostos/ultraestrutura , Ressonância de Plasmônio de Superfície/métodos , Vírus/ultraestrutura , Adsorção , Cristalização/métodos , Luz , Teste de Materiais , Nanopartículas Metálicas/química , Nanocompostos/química , Espalhamento de Radiação , Propriedades de Superfície , Vírus/química
20.
J Mol Recognit ; 27(4): 230-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24591180

RESUMO

Quasi-equivalent viruses that infect animals and bacteria require a maturation process in which particles transition from initially assembled procapsids to infectious virions. Nudaurelia capensis ω virus (NωV) is a T = 4, eukaryotic, single-stranded ribonucleic acid virus that has proved to be an excellent model system for studying the mechanisms of viral maturation. Structures of NωV procapsids (diameter = 480 Å), a maturation intermediate (410 Å), and the mature virion (410 Å) were determined by electron cryo-microscopy and three-dimensional image reconstruction (cryoEM). The cryoEM density for each particle type was analyzed with a recently developed maximum likelihood variance (MLV) method for characterizing microstates occupied in the ensemble of particles used for the reconstructions. The procapsid and the mature capsid had overall low variance (i.e., uniform particle populations) while the maturation intermediate (that had not undergone post-assembly autocatalytic cleavage) had roughly two to four times the variance of the first two particles. Without maturation cleavage, the particles assume a variety of microstates, as the frustrated subunits cannot reach a minimum energy configuration. Geometric analyses of subunit coordinates provided a quantitative description of the particle reorganization during maturation. Superposition of the four quasi-equivalent subunits in the procapsid had an average root mean square deviation (RMSD) of 3 Å while the mature particle had an RMSD of 11 Å, showing that the subunits differentiate from near equivalent environments in the procapsid to strikingly non-equivalent environments during maturation. Autocatalytic cleavage is clearly required for the reorganized mature particle to reach the minimum energy state required for stability and infectivity.


Assuntos
Capsídeo/ultraestrutura , Vírus de Insetos/ultraestrutura , Vírion/ultraestrutura , Animais , Vírus de Insetos/patogenicidade , Insetos/virologia , Estrutura Quaternária de Proteína , Vírus de RNA/ultraestrutura , Latência Viral/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa